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Abstract (227): Cybersecurity is often subject to under consumption due to externalities, where 

a significant portion of the cost of a cyber attack is borne by others in the network environment. 

Government regulation is a common solution to externalities as a type of market failure. In this 

article, we propose a novel framework to illustrate that cyber-attack modalities vary in terms of 

their organic cost internalization quotient. Some attacks, such as data breaches, are largely cost 

externalizing, meaning exposure should create little incentive for subsequent security investment 

following exposure to this attack modality. Other attacks, such as ransomware, are largely cost 

internalizing and should lead to a greater investment intentionality following exposure. Using 

nationally representative survey data of the United States population (n=2,228) analyzed with 

optimal full statistical matching, we show that self-reported past exposure to a high cost 

internalizing cyber attack (i.e. ransomware) significantly increases declared security investment 

intentionality by almost half a unit of standard deviation (ATE = 0. 474; 95% CI = 0.292 – 

0.655; p <= 0.001). Similar exposure to a high cost externalizing attack type (i.e. a data breach) 

does not result in any statistically meaningful changes to declared investment intentionality 

among respondents (ATE = 0.056; 95% CI = -0.035 – 0.147; p<= 0.264). The results suggest 

that the market for cybersecurity fails, but perhaps only in the case of some attack types and not 

others.    



Introduction 

Ransomware attacks are on the rise, with high profile intrusions during 2021 into the systems of 

Colonial Pipeline and JBS threatening the energy and food supply infrastructure of the United 

States. The increase in ransomware is partially due to changing attack modalities among 

malicious actors, with known data breaches within the United States declining as ransomware 

attack rise [1]. Many take the increase in volume and sophistication of ransomware attacks as a 

negative indicator of the trajectory of cybersecurity, threatening the operation of critical 

infrastructure such as hospitals, the bottom line of firms, the functionality of government, and the 

well-being of individual users.   

The move toward a greater volume of ransomware attacks speaks more broadly to a persistent 

problem of cybersecurity under-provision. A number of variables contribute to this state of 

affairs [2-8], but one oft-cited reason is that security is subject to negative consumption 

externalities [9-14]. Individuals who are affected, for example, by a data breach often do not bear 

the full costs of that event, with the organization that experienced the breach absorbing the 

majority share of the costs. Individuals whose devices are unwittingly dragooned into a botnet 

lose some processing power, but can also contribute inadvertently to downtime of a major 

financial institution’s website, potentially costing millions. In both of these examples, individuals 

will invest less in security than the socially optimal amount because large portions of the costs 

that result from that under investment are located elsewhere in the highly interdependent system 

of cyberspace [12]. But some attack types plausibly internalize costs to a greater degree than 

others. Many ransomware variants would be one such example, as the owner of an afflicted 

device is either forced to pay the ransom or the cost of remediation. Attack types selected by 

malicious actors that result in a higher proportion of internalized costs are likely to result in the 

opposite investment tendency to those with high cost externalization, that is, greater internalized 

costs should lead to more expenditure as a proportion of expected losses rather than less [14].   

In this sense, we propose that the variable attack types that malicious actors can select are 

unequal in their effects, not just in terms of differing intrusion vectors and potential damages, but 

also in terms of how they will inadvertently tool the resulting incentive structure of targets 

through greater or lesser cost internalization effects. By extension, the growth in ransomware, 

while probably negative in the short term, might actually result in medium-to-long run 

improvements in cybersecurity outcomes because the attack vector internalizes costs to the 

affected parties better than many alternative attack modalities.  

We test the intuitive basis of this claim using original representative survey data of the US 

population (n=2,228). After implementing optimal full matching so that self-reported exposure in 

the past year to either ransomware or a data breach is more akin to a randomized treatment in an 

experimental setting, we estimate the average treatment effect (ATE) of each type of security 

incident on a standardized (z-score) measure of omnibus cybersecurity investment intentionality 

(α=0.8599). Consistent with the simple argument that ransomware has a high cost-internalization 

quotient compared to other attack modalities, we observe that self-reported data breach exposure 

in the past year has no association with security investment intentions (ATE = 0.056; 95% CI = -

0.035 – 0.147; p<= 0.264), while self-reported ransomware exposure in the past year 



significantly increase such behavioral intentions (ATE = 0. 474; 95% CI = 0.292 – 0.655; p <= 

0.001).  

In the case of ransomware, density plots of weighted potential outcome means show that 

ransomware exposure leads to morphological changes to the distribution and not just greater 

mean-level cybersecurity investment intentionality. Similar to other settings where human traits 

predict cybersecurity behaviors [15], the gender seems to associate with morphological 

differences that follow from ransomware exposure. However, the changes seem to be the result 

of a base-rate effect and not a clear heterogenous treatment effect. In particular, men in the 

sample tend to report both higher baseline security investment intentionality than women absent 

ransomware exposure (weighted µ = 0.105 vs weighted µ = -0.259, respectively) and report 

greater mean security investment intentionality in cases of ransomware exposure (Male weighted 

µ = 0.613 vs. Female weighted µ = 0.138). Both groups increase investment intentionality 

following ransomware, however, by statistically similar amounts (0.508 units of standard 

deviation for men and 0.397 units of SD for the female subset), so the treatment is having a 

common effect across genders, but the differential base-rate investment levels are leading to 

modestly observable morphological differences post exposure to ransomware. 

The rest of the paper proceeds thusly. First, we discuss the phenomenon of cybersecurity under 

consumption, particularly as it relates to externalities. In this section, we derive two empirically 

testable hypotheses. In the second section, we present our methods, data, and diagnostic results 

for our matching models. The third section presents the results of the optimal full matching 

models and the estimated ATEs for both data breach and ransomware exposure. The section also 

plots the weighted potential outcome means for both attack modalities and then inductively 

investigates a modest morphological change that ensure following ransomware exposure. The 

fourth section discusses the results.  The fifth presents the limitations of the study. We then 

conclude.  

1.0 - Consumption Externalities and Cost Internalization in Cybersecurity Settings   

Cybersecurity is often plagued by an under-consumption problem [12-14]. The cause of this 

under consumption is, at least in part, a function of network effects and the interconnection of 

people, platforms, and devices online [10, 12]. Cybersecurity outcomes, in this sense, are a lot 

like private/public health outcomes surrounding illnesses such as the common cold. An 

individual who falls ill ends up bearing a certain amount of personal cost (e.g., cough, running 

nose, missed work, etc.). But, since that person has some positive chance of getting others ill as 

they go about their day, the total social costs of a single person’s illness are usually higher than 

those born by the person themselves. When making production or consumption choices, 

individual tend to not factor in negative externalities (external costs) as meaningful in the context 

of a given choice—or at least heavily discount social costs relative to the costs they directly bear. 

When making choices about going to work versus using a sick day, for example, the person 

might consider primarily how they feel and think only secondarily, if at all, about the costs that 

might result from their making other people sick (of course the increased salience of disease 

spread during the Covid-19 pandemic might change this balance somewhat).  



Similar cost-externalizing effects often happen in cybersecurity settings [6, 10]. If a device has 

become part of a botnet, for example, the owner might experience some small internalized costs 

(such as a reduction in processing capabilities) but this person’s device might also impose costs 

on others by targeting web services and other users in a distributed denial of service (DDoS) 

attack. The individual owner of the device might invest to clean up their machine, but the choice 

will be largely a function of their knowledge of the problem and the estimated costs of 

remediation versus the costs of leaving the device infected by malware. Worry about the social 

costs imposed by a DDoS attack upon others is often an afterthought in an individual’s decision 

to invest in security [13]. In some instances, such as with many industrial control systems, efforts 

to address security deficits through remedial steps such as software updates can even result in 

voided manufacturer warranties, creating an active disincentive toward investment in security.   

In other words, even though aggregate social costs (i.e., individual plus the costs to others) might 

far exceed the costs of prevention or remediation, decision makers might still choose to let 

vulnerabilities linger, malware lurk, or leave a patch unimplemented because the personal gains 

to be had from an investment in security are simply less than the direct personal costs of the 

expenditure.  

1.1. - A Novel Framework to Gage a Priori the Cost Internalization Quotient of Attack 

Modalities 
Negative externalities are examples of market failure. Hence, they are often addressed by 

government intervention. One way to address externality problems is to internalize costs to 

individual decision makers. Environmental regulations, for example, can impose costs on 

producers so that they bear a larger share of the previously externalized social costs that can 

accrue from air, water, or soil contamination. Government can implement cybersecurity 

regulation to affect similar outcomes by internalizing costs to decision makers through fiat (i.e., a 

non-market mechanism), leading to a higher level of security consumption. For example, 

Mondschein and Monda describes this internalization specifically as a regulatory ideal of GDPR:  

“The underlying regulatory ideal is to scale compliance to ensure that potential externalities 

created by the processing of personal data are internalized by the entities conducting these 

processing operations” [16]. 

In practice, regulatory rules might fail to actually result in improved security outcomes, 

depending on whether the restrictions govern security input choices or security output metrics 

[17], but forcing costs onto individual decision makers can correct for underlying externality 

problems in aggregate security consumption to some degree. Changes to consumer preferences 

can also compel greater social cost internalization, if, for example, people start buying goods 

known to be produced in socially desirable ways. And producers themselves might opt to 

internalize higher levels of social costs, depending upon the rate at which they discount social 

costs.    

Unlike in the realm of regular economic activity where the interaction of producers, consumers, 

and government largely determines the degree of cost internalization that occurs, cybersecurity 

settings are more innately antagonistic. In this domain, the choices made by malicious actors, 

often quite independent of the preferences of consumers, producers, or government, can also 



have direct material implications for the degree of cost internalization that occurs because of a 

cyberattack.  

The degree of cost internalization inherent to an attack modality is largely a function of the 

interaction of two factors: 1) responsibility and 2) proportion. Responsibility refers broadly to the 

locus of obligation for the targeted device, information, or service. Proportion refers to the share 

of damage a potentially responsible party must content with as a result of having a given device, 

information, or service targeted by a malicious actor. When the degree of responsibility is low, 

contending with the aftermath of a security event is effectively conveyed by the nature of the 

attack to another responsible party. For example, if a worker at a firm has their device targeted 

by ransomware, their employer might be ultimately responsible for the costs associated with the 

attack, depending upon the company’s IT use policy and the non-negligent behavior of the 

worker. When the proportion of the costs from a malicious event is low, a potentially responsible 

party needs to pay only some fraction of the total costs in remediation and clean up.    

Scenarios with a low degree of target responsibility and a low proportion of total costs plausibly 

have a high cost externalization quotient, which would suggest that exposure this sort of adverse 

event might create few new incentives for additional security investment. Data breaches would 

be one such attack variant, especially for the individuals whose records are compromised as a 

part of a larger data breach. Given prevailing regulatory structures, for example, the choice by a 

malicious actor to commit a data breach against a large company, exfiltrating and then selling the 

financial information of the firm’s clients, often imposes some direct costs on the firm but few 

on the individual’s whose records are actually affected by the breach [18]. Instead, individuals 

affected by a data breach often pay little (beyond worry) and receive some admixture of event 

notification, free credit monitoring, and liability coverage in instances where the compromised 

financial information is used to commit fraud. In the language of the cost-internalization 

framework, individuals affected by a data breach of a firm’s database have low responsibility for 

the attack and what costs they do bear are a small proportion of the whole. The implication here 

would be that an individual affected by a data breach ought to have little additional incentive to 

invest in security, since most of the costs that do accrue from the attack reside elsewhere in the 

system, largely external to the victim. This logic gives rise to H1.  

H1: Individual exposure to a data breach should not lead to greater levels of 

cybersecurity investment intentionality.  

Attack types with a comparatively high degree of target responsibility and a concentrated 

proportion of damages often involve very high cost internalizing dimensions. Ransomware 

attacks are a preeminent example. Ransomware affects a person’s device, encrypting files, and 

locks uses out of their system. Once done, the malicious actor behind the attack then demands 

that the afflicted user pay a ransom, often totaling a few hundred dollars—although the 

distribution of ransom payments tends to exhibit scale-free properties similar to income and can 

be considerably higher than the unstable average [19]. In contrast to many other potential attack 

types, ransomware is distinctive in that the cost of the ransom is largely carried only by the 

affected party – with instances wherein data is also exfiltrated (a hybrid ransomware/data breach) 

or the ransomware propagates from one afflicted machine to another (a worm) imposing 



additional external costs elsewhere in the system. In the quintessential ransomware event where 

the ransom imposes a finite choice set on the owner of the device (e.g., decrypt; recover/restore 

files from a back up; pay; or give up the machine), the full cost of the attack is almost perfectly 

internalized to the affected party. In the language of the cost internalization framework, 

ransomware targets a victim’s device and files, affecting a high degree of responsibility for 

remediation and subsequent prevention, and also involves a high proportion of concentrated 

costs, assuming the ransomware does not propagate to widely from an initially affected device to 

others. The high rate of cost internalization associated with ransomware attacks should produce a 

greater incentive to invest for those individuals affected by this cyberattack modality. This 

reasoning gives rise to H2.  

H2: Prior individual exposure to a ransomware attack should lead to greater levels 

of cybersecurity investment intentionality.  

2.0 – Methods, Data, and Diagnostics 

2.1 – Methods 

In this study, we use optimal full matching implemented in R using the MatchIt package to 

estimate the average treatment effect (ATE) of both self-reported ransomware and self-reported 

data breach exposure within the past year on an individual’s current cybersecurity investment 

intentionality in the present [20-22]. With observational data, exposure to a cybersecurity 

incident of either type is likely non-random, as people differ widely in terms of the online 

behaviors, technical competence, and so forth. As a result, simple cross tabulations or mean 

comparisons between perceived prior exposure to an adverse event and current cybersecurity 

investment intentionality are prone to spuriousness and omitted variable bias. Matching methods 

are a class of estimation tools, based upon the Rubin potential outcome causal framework [23, 

24], developed to estimate “treatment effects from nonexperimental or observational data” [25].  

Optimal full matching predicts propensity scores based upon an initial generalized linear model 

and then assigns units to subclasses based upon these values. The method then uses subclass 

membership to construct statistical weights that ideally produce a balanced sample between the 

‘treatment’ and ‘control’ groups (see Section 2.3 for diagnostics). While propensity score 

matching has limitations [26], optimal full matching is less sensitive to the functional form of the 

propensity score model, because of its use of subclass assignment to create the resultant 

statistical weights [27]. Optimal full matching also minimizes data loss by using most (if not all) 

of the available observations and allows for the estimation of an average treatment effect (ATE).  

2.2 – Data 

2.2.1 – Sample and Controls 

The data for this study consist of an initial representative sample of 2,028 US residents. We 

collected the data using the Qualtrics online panel between 8/3/2020 and 10/11/2020 and quota 

sampled on gender, age, household income, race, and region of the country in order to match the 

demographics of the general US population. The data also include a number of substantive 

questions that we transformed into mean unstandardized indexes to capture respondent 1) the 



familiarity with types of cybersecurity attacks (α = 0.954), 2) attitudes toward various data types 

(α = 0.965), 3) expressed levels of computer competence (α = 0.923), and 4) online self-efficacy 

scores (α = 0.946). The cyberattack familiarity and data attitude measures were developed for 

this study. The online self-efficacy (α = ) and computer competence scores (α = ) were taken in 

modified form from previously validated scales [28, 29].  

2.2.2 – The Outcome Measure 

The outcome measure of interest in this study is cybersecurity investment intentionality. 

Crucially, since we do not measure actual security behaviors at a device level, we are only able 

to approximate a respondent’s level of behavioral intention, which is a widely used outcome 

measure across numerous studies [15, 30-32]. We asked six discrete cybersecurity-related 

questions involving various forms of investment, including monetary expenditure, time spent on 

security, and four separate indicators of cognitive load related to common cybersecurity tasks. 

For the analysis, these questions were aggregated into a mean unstandardized item (α = 0.869). 

As the original scale for this measure is arbitrary, we transformed it into a z-score. Z-scores place 

the mean of the sample at zero and convert the units into more inherently meaningful units of 

standard deviation. Figure 1 plots the distribution of the z-score for the cybersecurity investment 

intentionality measure. 

   

2.2.3 – The Treatment Variables 

Lastly, the survey also includes two separate self-reported measures of previous exposure to an 

adverse cybersecurity event. One question asked respondents to self-report exposure to 

ransomware in the past year. Another similarly asked for a self-reported indication whether a 

person’s personal records had been involved in a data breach. In both cases, we gave respondents 

an option to select “I don’t know.” We dropped these cases from the analysis, with 277 people 

selecting this option for ransomware and 239 doing so for the data breach question. Additionally, 



since we are interested in the isolated treatment effect of exposure to either ransomware or a data 

breach, we parsed the data into those who were afflicted by one of the attack modalities but not 

the other. This procedure allows use to isolate for individuals exposed to ransomware but not a 

data breach and those afflicted by a data breach but not ransomware. Absent this procedure, 

some proportion of the sample would be, in effect, doubly exposed to the effects of two 

analytically separate attack modalities, contaminating any subsequent estimation of effects. This 

procedure leads to two effective data subsets. One includes all respondents who indicated unique 

exposure to ransomware in the past year and all those respondents who reported no exposure to 

any attack modality (n= 1,127). The second includes all respondent who indicated they were 

unaffected by any attack type and those indicating unique exposure to a data breach (n= 1,528).         

Table 1 summarizes the descriptive parameters of the data. 

Table 1. Descriptive Statistics Summary (Unweighted Data) 

 
Data 

Breach 
Exposure 
(N=494) 

No 
Exposure 
(N=1034) 

Ransomware 
Exposure 

(N=93) 

Overall 
(N=2013) 

Omnibus Security 
Investment (z-score) 

    

Mean (SD) 
0.0396 
(0.936) 

-0.0858 
(1.00) 

0.571 (0.942) -0.000 (1.00) 

Median [Min, Max] 
-0.138 [-

2.11, 2.91] 
-0.138 [-

2.11, 2.91] 
0.578 [-1.57, 

2.73] 
-0.138 [-2.11, 2.91] 

Missing 1 (0.2%) 23 (2.2%) 0 (0%) 39 (1.9%) 

Unique Ransomware 
Exposure 

    

Mean (SD) NA (NA) 0 (0) 1.00 (0) 0.0745 (0.263) 

Median [Min, Max] 
NA [NA, 

NA] 
0 [0, 0] 

1.00 [1.00, 
1.00] 

0 [0, 1.00] 

Missing 
494 

(100%) 
0 (0%) 0 (0%) 765 (38.0%) 

Unique Data breach 
Exposure 

    

Mean (SD) 1.00 (0) 0 (0) NA (NA) 0.303 (0.460) 

Median [Min, Max] 
1.00 [1.00, 

1.00] 
0 [0, 0] NA [NA, NA] 0 [0, 1.00] 

Missing 0 (0%) 0 (0%) 93 (100%) 385 (19.1%) 

Gender: Male     

Female 
269 

(54.5%) 
497 

(48.1%) 
32 (34.4%) 1014 (50.4%) 

Male 
225 

(45.5%) 
537 

(51.9%) 
61 (65.6%) 999 (49.6%) 



Table 1. Descriptive Statistics Summary (Unweighted Data) 

 
Data 

Breach 
Exposure 
(N=494) 

No 
Exposure 
(N=1034) 

Ransomware 
Exposure 

(N=93) 

Overall 
(N=2013) 

Income     

Mean (SD) 
2.94 

(0.954) 
2.87 

(0.990) 
2.89 (0.938) 2.83 (1.00) 

Median [Min, Max] 
3.00 [1.00, 

4.00] 
3.00 [1.00, 

4.00] 
3.00 [1.00, 

4.00] 
3.00 [1.00, 4.00] 

Age     

Mean (SD) 3.83 (1.66) 3.66 (1.67) 2.89 (1.35) 3.59 (1.66) 

Median [Min, Max] 
4.00 [1.00, 

6.00] 
3.00 [1.00, 

6.00] 
3.00 [1.00, 

6.00] 
3.00 [1.00, 6.00] 

Data Attitudes     

Mean (SD) 34.5 (21.9) 33.6 (22.8) 41.2 (26.5) 35.2 (22.8) 

Median [Min, Max] 
30.7 [0, 
99.7] 

28.7 [0, 
100] 

38.3 [0.0714, 
100] 

30.7 [0, 100] 

Missing 0 (0%) 2 (0.2%) 0 (0%) 3 (0.1%) 

Familiarity with 
Cyberattacks 

    

Mean (SD) 
2.68 

(0.967) 
2.52 

(0.998) 
3.04 (0.999) 2.57 (1.01) 

Median [Min, Max] 
2.67 [1.00, 

5.00] 
2.42 [1.00, 

5.00] 
3.00 [1.17, 

5.00] 
2.50 [1.00, 5.00] 

Computer 
Competence 

    

Mean (SD) 
4.67 

(0.634) 
4.66 

(0.607) 
4.47 (0.757) 4.59 (0.677) 

Median [Min, Max] 
5.00 [1.00, 

5.00] 
5.00 [1.00, 

5.00] 
4.88 [1.00, 

5.00] 
5.00 [1.00, 5.00] 

Online Self-Efficacy     

Mean (SD) 
3.54 

(0.874) 
3.59 

(0.865) 
3.73 (0.788) 3.53 (0.876) 

Median [Min, Max] 
3.67 [1.00, 

5.00] 
3.75 [1.00, 

5.00] 
3.75 [1.25, 

5.00] 
3.67 [1.00, 5.00] 

 

2.3 – The Matching Models and Diagnostic Balance Summaries 

The optimal matching models were implement using MatchIt [22]. The initial matching model 

used to predict subclass membership included all the demographics and dispositional variables 

contained in Table 1. The caliper common support threshold was manually tooled in each 



instance to produce an ideal sample balance that minimized data loss. In each case, the caliper 

remained at or below the suggested 0.2 units of standard deviation of the distance measure [25, 

33, 34]. In the data breach subset, the caliper was set to 0.2 and the sample was exact matched on 

respondent Gender in order to affect good sample balance. This process led to a loss of 12 

observations in the untreated group and 1 in the treated group. Within the ransomware matching 

model, the caliper was manually tooled downward from 0.2 to 0.085, leading to a loss of 22 

observations from the control group and 3 from the treatment group.   

Sample balance was assessed use the Cobalt package in R [35]. Figure 2 presents the absolute 

standardized mean differences and the variance ratios for the data breach exposure model and 

Figure 3 does the same for the ransomware subsample. In each instance, absolute standardized 

mean differences were less than 1 in the adjusted (i.e. matched) sample, as is recommended. 

Likewise, variance ratios in each case were within 0.2 of the ideal of 1, suggesting an acceptable 

level of balance in the matched samples. In total, Figures 2-3 indicates that the matching 

procedure resulted in an effective balance of covariates between treatment and control groups, 

which should allow for an unbiased estimation of the ATE for each type of adverse cybersecurity 

event.   

 

3.0 – Results 

Table 2 summarizes the ATE results of the two matching models. In support of H1, unique self-

report exposure to a data breach in the last year is not associated with changed cybersecurity 

investment intentionality (ATE = 0.056; 95% CI = -0.035 – 0.147; p<= 0. 264). In contrast, and 

supporting H2, exposure to ransomware in the past year is associated with a statistically 

significant increase in respondent cybersecurity investment intentionality (ATE = 0.474; 95% CI 

= 0.293 – 0.656; p <= 0.000). In substantive terms, ransomware exposure increases cybersecurity 



investment intentionality by between 1/3 and 2/3 of a unit of standard deviation on the z-score 

scale.  

Table 2. Self-reported Security Event Exposure and 

Cybersecurity Investment Intentionality (z-score) 

Estimated Average Treatment Effects (ATE) 

Yes vs No ATE 95% 

Confidence 

Interval 

Unique Data Breach 

Exposure  

0.056  

(0.050) 

-0.035 – 0.147 

Unique Ransomware 

Exposure 

0.474*** 

(0.111) 

0.292 – 0.655 

Note: Clustered Robust Standard Error in Parentheses.  

*** = p<0.001; ** = p <0.01; * = p <0.05 

 

 

Figures 5-6 plot the weighted potential outcome means for both the data breach and ransomware 

samples. In line with the output of the matching model, data breach exposure has little visually 

discernable effect on the distribution of effort across the omnibus cybersecurity investment 

intentionality measure and the weighted means for the two samples are almost identical (µ = -

0.058 for the unexposed sample and µ = 0.003 for the exposed group). In contrast, as shown in 

Figure 6, self-reported ransomware exposure shifts mean investment intentionality upward in a 

sizeable way (from µ = -0.069 to µ = 0.376).  

Interestingly, ransomware exposure also seems to lead to modest morphological changes to the 

distribution of cases across the omnibus security investment intentionality scale. In particular, 



ransomware exposure tends to lead to a greater density of security investment intentionality at 

two separate points on the scale (i.e. at both 0 and at 1 or more units of standard deviation on the 

z-score). These results support the potential operation of a clear attack type/cost internalization 

dynamic, but also raise an unanticipated question of potentially heterogeneous responses to a 

common treatment. Inductively investigating the source of these potential differences further 

suggests that human traits could drive the differing morphology of the ransomware exposure 

distribution [15, 32].  

As shown in Figures 5-6 and consistent with other investigations of human factors in the security 

investment [15], gender may play a role in the observed changes to the shape of the distribution 

of security investment intentionality following ransomware exposure. Filtering the ransomware 

exposure sample by respondent gender and re-plotting the weighted potential outcome means 

shows that there are two separate shifts occurring in the distribution of security investment 

intentionality as a result of self-reported exposure to ransomware in the past year. The results of 

a two-way ANOVA using the statistical weights derived from the matching model suggests that 

both ransomware exposure (F = 17.086; P<= 0.000) and gender (F= 42.174; P<= 0.000) 

associate with security investment intentionality levels. However, the interaction term (i.e. 

ransomware exposure by gender) is not significant (F= 0.263; p<=0.608).  

  

The non-significant interaction term in the two-way ANOVA suggests that men and women 

respond statistically similar to the treatment (hence there is no heterogenous treatment effect per 

se). Instead, the observable morphological differences at play are likely an artifact of base-rate 

effects. Men in the unexposed sample tend to have a higher overall level of security investment 

intentionality at the mean than women (weighted µ = 0.105 vs weighted µ = -0.259, 

respectively). Additionally, both men and women increase their security investment 

intentionality if exposed to ransomware (Male weighted µ = 0.613 vs. Female weighted µ = 



0.138). The clustering of respondents by gender across the cybersecurity investment 

intentionality scale, therefore, is a function of start point, not response type or severity.  

4.0 – Discussion  

The result of the optimal full matching models show that self-reported exposure to some types of 

malicious events cause a significant increase in security investment intentionality while others do 

not. In particular, exposure to a data breach—an attack modality that used to be a prevailing 

mode of malicious actor activity and that has, for individually affected parties, mostly cost 

externalizing effects—tends to lead to little discernable change to how seriously individuals take 

cybersecurity. In contrast, ransomware exposure tends to increase significantly the security 

investment intentionality of affected parties. Interestingly, gender potentially predicts starting 

location on the cybersecurity investment scale and so contributes to modest morphological 

changes to the density of activity across the scale, as seen in other studies [15]. These results 

have a number of interesting implications. 

The broadest point of note is that not all attack modalities that are available to malicious actors 

have the same cost in/externalizing effects. This simple notion has profound implications for 

malicious actors. Potentially, and over the long run, organic and voluntarily undertaken 

malicious activity might inadvertently generate a familiar ‘tragedy of the commons’ dynamic 

[36]. To the extent that individually preferred attack modalities (on the part of the attacker) also 

have a higher cost internalization quotient than available alternatives, independent choices made 

by malicious actors could gradually reduce the pool of vulnerable points of attack as investment 

rises due to the correction of a market failure through greater cost internalization [6]. The 

familiar analogy would be everyone choosing to stand at a hockey game (analogous to selecting 

the individually preferred, high cost internalization attack modality) because it is the optimal 

choice for one party, only to discover that when everyone does it, all become worse off. 

The findings also raise a little-considered additional variable for regulators who might want to 

address perceived deficiencies in cybersecurity by altering the cost structures for responsible and 

affected parties through regulation [16]. It is plausible that greater perceived cybersecurity risk 

correlates positively with a larger “policy window” through which “policy entrepreneurs” with 

plans for how to regulate cybersecurity might choose to leap [37]. Our findings suggest, 

however, that worse cybersecurity outcomes and forecasted trajectories do not necessarily 

warrant a greater degree of government (regulatory) involvement. If, instead, emerging attack 

modalities de jure have both higher damage output and greater cost internalizing effects for 

affected parties, then it becomes a more open question whether the ecosystem will adapt 

organically to reduce cybersecurity risk to socially optimal levels over the medium-to-long run 

or whether government needs to intercede. Since the effectiveness of regulation for improving 

cybersecurity outcomes is not guaranteed [17] and government programs can often result in 

unintended negative effects [38], determining if the system will efficiently self-correct (due to 

high cost internalization attributable to certain attack types) or if markets for security will 

continue to fail is a useful first-order question for regulators. 



A similar logic might prevail for cyber insurance as well. Premium pricing is at least partially a 

function of demonstrated security controls, client asset values, and ecosystem trends in malicious 

events [39, 40]. It can also be more simply stated as a function of perceived future risk. Over 

time, pricing of premiums will change for afflicted parties as a function of exposure to 

cybersecurity incidents. In an automobile insurance setting, an at-fault accident will likely lead to 

an increased premium, at least in part because it can signal greater risk-accepting behaviors by 

the driver. Similar premium increases could plausibly follow cybersecurity events. However, the 

results here nuance when and to what degree pricing schedules should change following 

malicious events. Core to the point is the extent to which exposure to a cybersecurity event could 

be taken as a future risk signal that would warrant higher premium pricing versus the exact 

opposite. In the case of high cost-externalizing cyberattacks (e.g., data breaches affecting 

individuals in our sample), past behaviors with regards to cybersecurity should predict future 

behaviors well (i.e., investment levels do not change). Exposure to a cyberattack that has a high 

degree of cost internalization, on the other hand, likely predicts less future risk and so might even 

warrant a premium reduction following an adverse event—unless, of course, the motive behind a 

premium increase is to recoup costs and not use past events as a predictive variable of future risk.   

The base-rate investment levels in the weighted sample are quite strongly associated with the 

gender of the respondents, with women declaring lower levels of cybersecurity investment 

intentionality on average than men. These results are similar to other studies, but it is doubtful 

that gender as such matters. Instead, as detailed in other studies [32], gender is likely affecting 

other factors such as exposure to STEM fields, perceived online self-efficacy, and self-reported 

computer competence levels in ways that reduce the mean base-rate security investment 

intentionality levels of women versus men. An interesting implication of this finding is that 

greater inclusion of women within STEM-fields could actually work to improve cybersecurity to 

the extent that such exposure increases perceptions of self-efficacy and leads to greater 

investment intentionality. Framed conversely, marginalization of people from STEM fields—

again, to the extent that exposure breeds self-efficacy and self-efficacy predicts security 

investment intentionality—might be construed as a security issue and not just a matter of 

fairness.    

Finally, the validation of hypotheses about cost internationalization and security investment 

behaviors that we derived from the cost internalization framework suggests some utility to the 

simple bi-variate framework. Two points are particularly relevant in this case. First, the model 

provides variables that are independent of known target reactions to any given attack, which 

might allow for a degree of prediction as possible and preferred attack modalities continue to 

evolve over time. The broadest level prediction would be that new attack modalities that target 

those with a high degrees of responsibility for the targeted device, information, or service and 

that have high concentrations of damage would be highly cost internalizing attacks and should 

lead to greater subsequent security investment. Low scores on these values would entail a low 

cost internalizing attack modality and should be unassociated with subsequent increases in 

investment. In other words, the framework might provide a couple of leading indicators of 

investment behaviors by future targets of cyber-attacks.  



Perhaps the broadest implication for the demonstrable utility of the cost internalization 

framework is that externalities, so often considered a major source of security under 

consumption [6, 9, 10, 12-14], might instead by a source of market failure for security only in the 

case of some attack modalities and not others. Framed another way, there might be market 

failure in some zones of security but efficient markets for security in others [41]. Extrapolating 

from the framework to other attack types, the market for CDN provided DDoS protection would 

be an efficient market, characterized by comparatively little evidence of market failure and 

security under consumption. While latent capacity for DDoS and rDDoS attacks remains high 

globally [42], demonstrable disruptions to service delivery via web services seem, on the face of 

it at least, to be fairly negligible today. While the ease and feasibility of remediation and 

prevention methods varies by attack modality, the results suggest that ransomware might 

become, in the future, a lot like DDoS attacks (largely a well-counter nuisance) as the market for 

security effectively mobilizes due to its high cost-internalizing quotient.      

5.0 – Limitations  

The study presents an estimation of the average treatment effect of two different cybersecurity 

attack modalities. Several limitations to the study exist, however.  

First, we measured behavioral intentions and self-reported exposure to a cybersecurity event in 

place of real security practices or forensically confirmed malware infection or independently 

corroborated data breach exposure. These are indeed limits. Yet a number of studies have shown 

that security behavioral intentions can correlate with practice, making this a useful measure. 

Likewise, security events—especially ransomware and data breach exposure—are highly salient 

for respondents, so the reporting error for this class of phenomenon is plausibly lower than might 

be the case.  

Second, while optimal full matching is doubly robust to misspecifications in either the matching 

or effect estimation, the model might still be prone to omitted variable bias. Since the model 

works by matching treated and untreated respondents on important covariates, then the exclusion 

of an important covariate might bias the effect estimations. We controlled for a number of 

demographic (i.e., human []) traits and also important distortional characteristics such as 

perceived computer competency and online self-efficacy. It is always possible that we omitted an 

important control from the models, but we strongly suspect that the results are robust.  

Third, we investigated the potential operation of cost in/externalization of two separate 

cyberattack modalities at the individual level. The results as they pertain to individual 

respondents are clear, but it is less obvious that what applies at the individual level would scale 

to, say, firms or government, each of which might be nested in organizational and regulatory 

webs in which the individuals in our sample are not (though we believe this to be a limitation of 

the data and not of the methodology or analytical framework, and it would certainly be possible 

to survey boards in a similar way). Nevertheless, we suspect that our results are likely 

generalizable across individuals and potentially across scales, at least to some degree. We 

showed that the incentives generated by a given cyber-attack are endogenous to the selected 



attack modality and cost in/externalization is a general enough effect that it likely applies to 

individuals, enterprises and non-profits.  

Future research measuring known attacks, tracking de facto security behaviors, and doing so 

across scales would help to address these limitations.      

6.0 – Conclusions  

Some cyber-attack modalities internalize costs to affected parties better than others. The 

implication is that some individuals (and potentially larger institutions) might come out of an 

adverse cybersecurity incident with a greater or lesser incentive to investment more in security, 

depending upon the cost in/externalizing nature of the attack itself.     
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