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Abstract

Hedonic property studies that value water quality improvements generally focus on

waterfront homes, or those very near to affected water bodies. Estimated marginal

willingness to pay (MWTP) for pollution reduction in these studies is typically small

and drops sharply with distance. One challenge with the hedonic approach is that it

is unclear what MWTP estimates capture. Unlike in the case of air pollution, health

effects from ambient water quality improvements are unlikely to be a significant share

of estimated MWTP. Existing estimates likely combine primarily amenity benefits of

water pollution reductions and recreational benefits. While amenity benefits may be

highly localized, as prior studies have shown, recreational benefits may not be, and

prior hedonic work may have failed to capture the potentially significant influence

of recreation on MWTP for water quality improvements. Using the case of nutrient

pollution reductions in Tampa Bay, Florida, we estimate a two-stage model combining

a random-utility recreational demand model with a hedonic housing model, allowing

households to optimize over regional aquatic recreation opportunities (influenced by

pollution in recreational waters), as well as local ambient water quality very close to

homes. Preliminary results indicate that Tampa homeowners have significant MWTP

for both improvements in local ambient water quality, and improvements in regional

recreational waters.

∗Resources For the Future, Washington, DC.
†LBJ School of Public Affairs, University of Texas at Austin
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1 Introduction

U.S. water quality has improved significantly since the passage of the Clean Water Act in

1972 in both obvious and subtle ways. The elimination of once-frequent river fires in heavily

polluted areas is often-cited evidence in the obvious category (Olmstead 2009); improvements

in fish catches and other indicators of ecosystem health are more subtle. Recent estimates

suggest a causal link with the CWA, especially with regard to the regulation of effluent from

municipal sewage treatment plants and, perhaps more directly, the provision of subsidies for

their construction and improvements in these plants’ treatment processes (Keiser & Shapiro

2017). This work is a major contribution to economists’ understanding of U.S. water quality

regulation; while dozens of studies by economists have established causal impacts of the Clean

Air Act on emissions and outcomes such as infant mortality (Chay & Greenstone 2005),

industrial activity (Greenstone 2002), and adult income (Isen et al. 2017), Keiser & Shapiro

(2017) provide the first aggregate causal estimate of the CWAs impact on ambient water

pollution concentrations, an astonishing fact for a major environmental statute approaching

50 years old.

If U.S. water quality regulation has improved ambient water quality, this does not prove

that it is efficient; efficient policies equate marginal benefits with marginal costs. Studies

by economists dating to the 1980s suggest that the marginal benefits of the CWA may be

well below its marginal costs (Freeman 1980, Lyon & Farrow 1995), a finding confirmed,

albeit via much more detailed analysis, by Keiser & Shapiro (2017). However, as in most

economic analyses of environmental policy, obtaining comprehensive benefit estimates is

more challenging than obtaining comprehensive cost estimates. Thus, when interpreting the

existing literature, there is a risk of erroneously concluding that water quality regulation

should be less stringent, simply because benefits have not been sufficiently captured.

In this paper, we test an alternative way to estimate the marginal benefits of water

quality improvements. Our basic intuition is that, while property owners likely have some

marginal willingness to pay (MWTP) for pollution reductions in the small creeks, canals,

streams, ponds, lakes and other water bodies that dot the landscape in many residential

areas, their MWTP for water quality is likely also affected by the degree to which regional

water quality affects recreational opportunities. For example, a resident of Brooklyn, New

York, may value improvements in water quality in the Gowanus Canal, particularly if they

live very nearby, due to amenity changes – it may smell and look better, for example. But

they may also value improvements in water quality at Brighton or Rockaway beaches, or the

fact that they can compete in the New York City triathlon with a swim portion in the Hudson

River. Unfortunately, existing estimates of MWTP for water quality tend to focus either
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on the impacts of highly-localized water quality improvements on housing values (Leggett &

Bockstael 2000, Poor et al. 2001, 2007, Walsh et al. 2017), or on the impacts to recreational

fishing, swimming, boating and general visitation (Haab & McConnell 2002, Lew & Larson

2005, Timmins & Murdock 2007). A comprehensive economic valuation framework is needed

in order to evaluate the benefits of major water quality improvements and compare them

with costs.

We apply an integrated, two-part theoretical model of recreational and housing demand

developed by Phaneuf et al. (2008) to the phenomenon of ambient water quality improve-

ments Tampa Bay, Florida. First, we use a random-utility recreational demand model to

estimate Tampa Bay households’ indirect utility from recreational fishing trips to 85 sites in

the region between 1998 and 2014. Second, we estimate a panel fixed-effect hedonic property

model, exploiting variation from more than 140,000 repeat sales between 1998 and 2014. The

independent variables in the hedonic model include both local ambient water quality very

near each home, and our indirect recreational utility estimate at the zip-code level, so that

the hedonic estimates of MWTP include both amenity and recreational improvements due

to water pollution reductions.

The water pollution problem we examine in the paper is nutrient over-enrichment – a

common problem, especially in coastal areas that are the ultimate destination (prior to the

oceans) of urban and agricultural runoff from very broad geographic areas. This phenomenon

involves the addition of too many nutrients, primarily nitrogen and phosphorous, to water

bodies via agricultural and urban nonpoint source pollution, which stimulates excessive algae

growth. When the algae die, they decay and deplete dissolved oxygen (Morrison & Greening

2006). Among the serious consequences of nutrient pollution are dead zones, in which marine

life that cannot escape the low-oxygen zone cannot be supported. Reported dead zones

worldwide doubled from 1995 to 2008 to more than 400 zones, and increased to 515 sites in

2011 (Rabotyagov et al. 2014). U.S. coastal waters that experience this phenomenon include

Tampa Bay, the Gulf of Mexico, Chesapeake Bay, Puget Sound, Long Island Sound, and the

North Carolina coast.

Economists have estimated significant impacts of dead zones on commercial and recre-

ational fisheries (Massey et al. 2006, Smith et al. 2017), though other economic damages

from sustained dead zones are largely unknown (Barbier 2012). Anecdotal evidence suggests

that recreational impacts other than fishing could be significant. In 2005, one of the years

during our study period, Floridas swimming beaches had more than 3,482 beach closures and

health advisories due to high levels of bacteria caused by algal blooms, including cyanobac-

teria (blue–green algal) blooms (Clean Water Network of Florida 2008). Prior hedonic work

suggests that amenity values of nutrient pollution are capitalized into housing prices (Poor
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et al. 2007, Walsh et al. 2011, Guignet et al. 2017). Effects seem particularly strong for

homes directly on the water; for example, Walsh et al. (2017) find that the impacts of nu-

trient pollution reductions on properties in the Chesapeake Bay diminish dramatically at a

distance of 1,000 meters.

We find significant household MWTP for nutrient pollution reduction in Tampa Bay due

to both the local amenity benefits and improved recreational opportunities; both factors

are capitalized into housing prices and both are statistically and economically significant.

Marginal willingness to pay for improvements in very local water quality - an indicator of

amenity values - is about $230 per home, on average. Preliminary estimates suggest that

Tampa homeowners have significant MWTP for the impact of water quality improvements

on regional recreation opportunities, as well. This suggests that prior work may have under-

estimated the value of water quality improvements to homeowners.

We make three main contributions to the literature. First, we provide evidence of the

importance of considering both the local and the regional recreational impacts of water

quality improvements in estimating economic benefits. We find that recreational benefits

left out of prior hedonic studies are very significant. Our empirical tests, which use housing

transaction data and recreational fishing data available in consistent formats for the entire

United States, could potentially be applied on a much larger scale to value changes in federal

water quality standards. Second, while we do not break new theoretical ground - we adopt

our two-step approach from Phaneuf et al. (2008) - to our knowledge, we are the first to use

repeat-sales data in a panel hedonic model to estimate the combined amenity and recreational

value of water quality improvements, increasing our confidence that our estimates are causal,

relative to the only prior empirical application in Phaneuf et al. (2008). Third, we generate

estimates of the aggregate benefits of nutrient pollution reductions in Tampa Bay, a major

U.S. coastal city. The Florida Department of Environmental Protection implemented a set

of new numeric nutrient standards in accordance with the CWA in 2013; our results can be

used to estimate the benefits of these new standards, and compare them with the costs of

policy options on the table .

The rest of the paper proceeds as follows. In Section 2, we review the prior literature on

hedonic property and recreational demand models of the benefits of water quality improve-

ments. Section 3 presents our theoretical model. The data and study area are described in

Section 4, and econometric models are presented in Section 5. Section 6 summarizes results

and robustness checks, and Section 7 concludes.
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2 Literature Review

The hedonic analysis technique was established by Rosen (1974) and has been used to

estimate marginal implicit prices of numerous environmental amenities and disamenities

including air quality, water quality and hazardous waste sites (Smith & Huang 1993,

Boyle & Kiel 2001, Greenstone & Gallagher 2008, Gamper-Rabindran & Timmins 2013,

Muehlenbachs et al. 2015, Keiser & Shapiro 2017) 1.

With respect to nutrient over-enrichment, in particular, Leggett and Bockstael(2000),

Poor et al.(2007), Guignet et al.(2017) and Walsh et al.(2017) investigate the impacts of

water quality in Chesapeake Bay on nearby property prices. For example, Guignet and

his coauthors use residential transaction data from 1996-2008 in 11 counties of Maryland

to estimate the implicit value residents place on submerged aquatic vegetation (SAV)

degradation resulting from nutrient over-enrichment (Guignet et al. 2017). Poor et al.(2001)

use water quality data from 24 monitors throughout the St.Mary’s watershed in Maryland to

examine the impacts of non-point source water pollution via change in water clarity. Gibbs

et al.(2002) also use data on water clarity in New Hampshire lakes as a measurement of the

degree of eutrophication from nutrient over-enrichment. It is important to understand that

nutrient over-enrichment is typically a regional phenomenon. Nitrogen and phosphorous

enter water bodies from stormwater and other sources over a broad catchment area, so that

the impacts are absorbed not only locally in small streams but also in large streams, rivers

and in coastal areas, in bays and estuaries.

Prior work on water quality has focused on estimating the benefits of water quality

improvements for waterfront properties (Leggett & Bockstael 2000, Gibbs et al. 2002, Poor

et al. 2001, Horsch & Lewis 2009, Zhang & Boyle 2010). Leggett and Bockstael(2000) is

an early study utilizing hedonic analysis to study the impact of water pollution. They use

fecal coliform counts as the quality indicator in an analysis of waterfront homes on the

Chesapeake Bay. Based on their analysis, water quality matters to waterfront homeowners,

and the projected increase in the residential waterfront properties due to a reduction in fecal

coliform counts to below 200 counts per 100 mL is $12.145 million(Leggett & Bockstael

2000). However, until recently, it was often difficult to find a sufficient number of waterfront

1Theoretically, hedonic analysis has two stages. The first stage is the use of property prices and char-
acteristics to obtain the implicit marginal willingness to pay. The second stage uses the marginal implicit
prices to estimate the welfare changes resulting from changes in environmental amenities. Given limitations
in data availability, most empirical analyses focus on the first stage. Only a limited number of studies have
estimated welfare changes (Phaneuf & Requate 2016).

5



properties and enough variation in water quality to conduct large-scale hedonic analysis

(Phaneuf et al. 2008, Freeman et al. 2014).

Poor et al.(2007) is the first study to include both waterfront and non-waterfront

properties. The authors investigate the value of ambient changes in nutrient pollution in the

St.Mary’s watershed, Maryland. They find that the marginal implicit prices associated with

a one-milligram-per-liter increase in total suspended solids and dissolved inorganic nitrogen,

are -$1086 and -$17,642, respectively (Poor et al. 2007). More recent studies that focus on

both waterfront and non-waterfront properties find the impacts of water quality diminish

for properties located further away from the affected water bodies. Walsh et al.(2011)

investigate the effects of enhanced water quality on both waterfront and non-waterfront

property prices, using hedonic models in Orange County, Florida. Their findings indicate

that the value of increased water quality depends upon the property’s location and proximity

to the waterfront (Walsh, Milon & Scrogin 2011). Walsh et al. (2017) find the impacts of

water quality on properties in the Chesapeake Bay region diminishes when distance from a

waterbody reaches 1000 meters.

While water pollution seems to have negative impacts on residential property prices

located close to water, prior hedonic models have not attempted to tease out the different

impacts of local nutrient pollution reduction and the water quality changes from major

coastal water bodies, which may affect recreation. For example, most neighborhoods in

the Tampa Bay area do not abut to the Bay itself, and may even be many miles from

the nearest access point. But many households in these non-Bayfront areas may still have

some willingness-to-pay for improvements in water quality that would reduce regional beach

closures or fishing opportunities in addition to improvements in their own backyard.

In theory, hedonic property studies like those cited above could pick up both amenity

and recreational benefits of water quality improvements. In many cases, when analysts

have looked for effects outside of a very tight radius (of 2-3 kilometers), they have not

found such effects (Walsh et al. 2011, Keiser & Shapiro 2017). This has been interpreted

as evidence that homeowners only value water quality very near to their homes. However,

Figure 1 demonstrates our concern about interpreting standard hedonic estimates in this

way. Consider a household located in the black box in Figure 1. The blue and green dots

represent hypothetical water quality monitors. The smaller of the two circles in Figure 1

represents the typical relatively small zone of influence of water quality on property values.

The larger of the two circles in Figure 1 represents a much larger zone of influence, which
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in a typical U.S. city is likely to contain many water quality monitors, but only a small

number of (if any) monitors on larger, charismatic water bodies used for recreation. For

example, in Figure 1, there are 12 monitors on waterbodies in the larger circle that would be

counted in an average at this larger radius in the standard hedonic approach, but only 6 (in

the Tampa Bay waterbody) that might matter for household recreation. If this is the case,

it would not be surprising if we regressed housing prices on an average measure of water

quality within the large circle around each home and found no effect. The impact of water

quality in small water bodies in other homes’ backyards, which might approach zero, could

easily obscure any impact of a small number of monitors in a distant, larger recreational

waterbody. In addition, households may travel quite far to recreate; for example, in our

sample, the average travel time for recreational fishing outings among Tampa residents is

almost one hour. Thus, the traditional hedonic approach may be inadequate to capture

potentially significant recreational values.

Much existing literature on recreational demand for water amenities use random utility

model (RUMs) to depict a consumer’s decision-making process (McFadden 1973, 1981,

Freeman et al. 2014). Past studies using RUMs have studied the demand for recreational

fishing (Greene et al. 1997, Jakus et al. 2000, Haab & McConnell 2002, Timmins & Murdock

2007), swimming (Bockstael et al. 1987), boating, land-based activities at water sites (Breen

et al. 2017), and general visitation (Lew & Larson 2005, Keeler et al. 2015). Similar to the

hedonic property studies, the recreation demand literature also focuses on one large regional

water body, or on local lakes, rivers and waterways. One group focuses on the valuation of

recreation in large coastal waters. Greene et al. (1997) uses the Marine Recreational Fishing

Statistics Survey to find that average annual values of recreational fishing in Tampa Bay is

$18.14 for participants and $0.048 for nonparticipants. Keeler et al. (2015) uses geotagged

recreation trip photos in social media as a proxy for recreational visits to lakes in Min-

nesota and Iowa to estimates the valuation of water quality improvement (Keeler et al. 2015).

While hedonic price models and recreation demand models are widely used in estimating

the marginal implicit prices of environmental quality characteristics, they are not without

limitations.

First, hedonic models do not estimate total economic value or total willingness-to-pay

to the environment, but only capture the perceived differences in environmental attributes,

and only measure the willingness-to-pay of single-family homeowners, a subset of local

populations. In places like Tampa Bay, tourists may value water quality improvements

7



even more than residents, but the willingness-to-pay of visitors are not captured in the

hedonic price models. Third, some assumptions of the hedonic property model can be

problematic. Hedonic analysis assumes buyers and sellers have complete information on

housing characteristics, and that consumers are free to choose from a set of houses with

any combination of characteristics. In real housing markets, consumers usually have a

limited list of properties they can choose from and may satisfice instead of maximizing their

utility. Given these caveats, however, hedonic analysis is one of the best available economic

methods for valuing changes in environmental quality.

One important limitation of recreation demand models is that they are largely static in

nature. Most models assume a fixed and exogenous choice set and few interactions among

trips taken by an individual over time. However, the choice set is dynamic as consumers

will learn about new possible sites and site characteristics over time (Freeman et al. 2014).

Most recreation demand models also treat site attributes as exogenous factors and ignore

potential endogenously-determined and unobservable site characteristics (Moeltner & von

Haefen 2011). One such characteristic is site congestion (Timmins & Murdock 2007).

Unobservable site attributes that determine the decision of one angler’s recreation choice

could also affect the decisions of other anglers. Congestion of a recreation site occurs when

many anglers visit the same site that it diminishes the utility and the willingness to pay of

these anglers and could be correlated with water quality. We will discuss this issue further

in Section 7.

3 Theoretical Motivation

We build on the integrated property value and recreation model of Phaneuf et al. (2008),

incorporating multiple aspects of water quality from major coastal water bodies in local

property purchase decisions.

We assume that consumers make long-run and short-run decisions that may be related

in housing prices. In the long run, consumers evaluate neighborhood and property amenities

to make residential location decisions. Pollution in nearby water is an attribute purchased

along with the homes, and thus enters the long-run decision-making process. Once the

location is chosen, a household can allocate its remaining resources (including time) on

market goods and recreation. In the short run, households evaluate the benefits of outings

to recreational sites conditional on their residential locations. Since short-run recreational
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decisions are affected by long-run residential location choices, we can assume that when

making property purchase decisions, consumers will consider each location’s accessibility to

recreational opportunities.

Let a household’s utility from recreational trips be x(Q) where Q measures the water

quality of recreational water bodies, z be a numeraire good with price 1, and h(a, q) be

housing services as a function of property attributes and nearby water quality q. In the

short run, a household faces the following maximization problem:

max
x,z

U(x(Q), z|h(a, q)) s.t. m = pxx(Q) + z (1)

A household is maximizing its utility for recreational trips and market goods conditional

on its income after housing expenditures, where m is their income net of the housing price.

Note that the model assumes that consumers can perceive the change of water quality Q.

For instance, if nutrient pollution causes excessive amount of algae in the water, households

are assumed to notice the color change in water and may change behaviors, like spending

less time recreating in or near polluted water. Maximizing utility subject to the budget

constraint yields the conditional indirect utility function for the short-run problem:

V = V (px,m,Q, q, ε) (2)

where ε measures the unobserved heterogeneity of each property.

We can estimate the indirect utility from recreation using a recreational demand model.

Let CS(Q, ε) measure the gains to a household from visiting recreation sites in Tampa Bay

with water quality Q. When households make decisions about taking recreational trips, they

consider potential benefits from visiting each possible site. If water quality and recreation

costs vary spatially, different neighborhoods will offer different potential net benefits of recre-

ation. As a result, we can model expected recreation benefits as an attribute of location.

The expected benefits of recreation for a residential location can be given as:

ECS(Q) = E[CS(Q, ε)] (3)

In long run equilibrium, the average recreational opportunity of a location can be capi-

talized into housing prices. Note that the recreational benefit index is not at the individual
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household level, but at the neighborhood level. It measures the average recreation oppor-

tunity that one could expect living in a neighborhood. Since recreation decisions are made

conditional on residential location decisions, we replace the x(Q) in equation 1 with ECS(Q)

generated from the previous section. The long-run utility maximization problem becomes:

max U = U(ECS(Q), h(a, q), z, ε)

s.t. m∗ = ph(a, q) + pxx̃+ z
(4)

Households choose their residential locations at which their marginal benefit from the

expected recreation utility and from the environmental services that are immediately

available at the home’s location is equal to the marginal property purchase price 2.

4 Study Area and Data

Tampa Bay and its watershed (Figure 2) stretches more than 400 square miles. It is

Florida’s largest open-water estuary and the second-largest metropolitan area in the state.

The Bay provides important value for its economic opportunities, habitats, ecosystem

services, recreational use such as boating and fishing, power plant heat exchange, ports and

much more. More than 2.3 million people live in the study area and almost 90 percent of

the total employment within the three counties – Hillsborough, Pinellas, and Manatee – is

located in the watershed (Tampa Bay Estuary Program & Tampa Bay Regional Planning

Council 2014).

Florida has a long history of regulatory attention to restore, protect and manage its

abundant surface water resources. In Tampa Bay, seagrass coverage, an important indicator

of the healthiness of an aquatic ecosystem, declined from about 16,000 ha in 1950 to near

8800 ha in 1982 as a result of the excessive nutrient discharge to the Bay (Avery & Johansson

2010). Recognizing the need to place extra emphasis on surface water protection, especially

on point and non-point source pollution, the Florida Legislature passed the Surface Water

Improvement and Management(SWIM) Act in 1987 to direct state’s water management

districts to design and implement plans for the improvement of surface water quality

(Southwest Florida Water Management District 1999). Tampa Bay is the top priority

of surface water management programs in the Southwest Florida Water Management

2Local water quality q and recreation water quality Q may be correlated. Future work is needed on this
issue.
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District(SFWMD). While water quality in the Tampa Bay watershed has improved over

time, nutrient pollution still contributes to severe degradation of aquatic resources (Office

of Water 2012). In 2010, the Florida Department of Environmental Protection (FDEP)

developed a numeric Total Maximum Daily Load(TMDL) – effectively a water pollution

“budget” under the Clean Water Act – to ensure that the designated uses of Florida’s

waters are maintained (Florida Department of Environmental Protection 2016). Figure 3

shows that the annual mean dissolved oxygen increased substantially between 2010 and 2014.

4.1 Recreational Demand Data

For the recreation demand model, we use angler data from the Marine Recreational

Fisheries Statistics Survey (MRFSS) and Marine Recreational Information Program

(MRIP) conducted by the National Ocean and Atmospheric Administration (NOAA)

(NOAA Fisheries 2008). The MRIP collects information from recreational anglers around

the United States about where and how often they fish and their catch rate using surveys.

While the main purpose of the MRIP is to provide estimates of the recreational catch

and effort that fishery managers, stock assessors and marine scientists need to ensure the

sustainability of ocean resources (NOAA Fisheries 2013), it also has limited information

on anglers’ characteristics. From the MRIP, we know the year, month and time that each

interview takes place, zipcode of anglers’ residential address, the fishing site latitudes and

longitudes, number of people in each fishing group, and catch counts.

Since the MRIP data doesn’t have anglers’ full address or self-reported travel cost, we

use the fishing site latitudes and longitudes and anglers’ residential zipcode to estimate

travel cost for each angler. We assume that all anglers live in the population-weighted

center of their zipcodes. The Census Bureau generates Zipcode tabulation areas (ZCTAs) to

represent USPS zip code service areas 3. We use the 2010 Census Bureau ZCTA maps and

population data to create a population-weighted center for each zipcode in the three counties

using ArcGIS. The locations of fishing sites and population-weighted zipcode centers can be

found in Figure 4. We then use the Open Source Routing Machine API to calculate round-

trip travel time from the zipcode-weighted population centers to fishing sites (Luxen &

Vetter 2011). The mean round trip travel time is 57.22 minutes, or about one hour (Table 2).

3In this paper, we refer to the US Census ZCTAs as zipcodes given the fact that in most instances they
are the same.
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4.2 Property Transaction Data

We collected property sales data from the property appraiser’s offices in each of the three

counties. In order to better identify the effect of water quality on residential property prices

and be consistent with prior hedonic analyses, we restricted the sample to single-family

homes. The data include sales dates, dates of construction, the size of the parcel and

historical sale prices. The data from the Hillsborough County Property Appraiser’s

Office contains more detailed information, including dates of major improvements, size

of living spaces, number of stories, number of bedrooms and bathrooms. Because we

use the repeat-sales method, we restrict our data to houses that have 2 or more sales

between 1998 and 2014. Hillsborough county has 186,289 qualified property sales that

occurred over the 1998-2014 sample period. Pinellas county has 107,701 repeated sales,

accounting for 1998-2014. Due to data limitations, we only have sales data for Manatee

county from 2005-2014. Over the 10 years, 20,699 properties have repeated sales in Manatee4.

We geocoded the sales records and related them in ArcGIS with shapefiles of house

locations and characteristics from the county property appraisers’ offices. We related the

property data with water quality data in ArcGIS, and only use properties that have water

quality monitors within a 3 km radius. 153,301 properties are dropped from our dataset

because they do not have water quality monitors within a 3 km radius. Hillsborough county

has 76,846 properties with water quality monitors nearby. Pinellas county has 68,848

properties with water quality data. Manatee county has 15,696 properties5. Table 2 reports

summary statistics. The mean property price in the three counties is $230,5616. Properties

in our dataset were sold on average 3 times from 1998-2014, and were about 32 years old

when a transaction occurred. We also include a list of property attributes from Hillsborough

county because Hillsborough county has the most qualified sales in our dataset, accounting

for 47.62%.

4.3 Water Quality Data

We use local water quality measures from the STOrage and RETrival (STORET) data

warehouse from the United States Environmental Protection Agency (US EPA), which in-

4Repeat sales represent 63.2% of total sales in Hillsborough county (1998-2014), 59.7% of all sales in
Pinellas county (1998-2014) and 44.9% in Manatee (2005-2014).

541.3% of repeated sales in Hillsborough (1998-2014), 63.9% of repeated sales in Pinellas (1998-2014)
and 75.8% of repeated sales in Manatee (2005-2014) have water quality monitors nearby.

6All prices are given in 2014 dollars.
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cludes water quality monitoring data collected by water resource management groups across

the country. Organizations, including states, tribes, watershed groups, federal agencies,

volunteer groups and universities, submit data to the STORET Warehouse so that their

data are publicly available. We first keep all non-missing observations with monitoring date,

station latitude and station longitude. The analysis sample includes 209,336 observations

coming from 5,913 monitoring stations. The mean number of readings from each station per

year is 53, and the monitors report on average for 8 years. The basic descriptive statistics

of dissolved oxygen (DO) from STORET can be found in Table 1. Because some stations

change name slightly, and some stations across counties have the same identification number,

following Kaiser and Shapiro (2017), we define a station as a unique latitude and longitude

pair in the process of linking sold properties with nearby water quality measurement stations.

Figure 5 depicts the location of the Tampa Bay watershed (University of South Florida

Water Institute 2017), locations of water quality monitors from STORET and the properties

with repeated sales in the study. As mentioned before, the properties sold in a given

calendar year were matched with monitors within a 3 kilometer radius. We then calculate

the annual mean DO concentration of all the monitoring sites within 3 km radius to generate

the local water quality measure for each property. The 3 kilometers radius is chosen on

the base of Keiser and Shapiro’s finding that nationwide water pollution impacts were

significant for homes within 3 kilometers of monitors (Keiser & Shapiro 2017). We also test

the robustness of our results to other choices – 300 m, 500 m and 1000 m radius, as well as

another traditional method that matches houses with the closest water quality monitor. We

use the average dissolved oxygen readings of each year the home was sold to capture the

temporal variation in water quality. In Section 7, we test the robustness of results to uti-

lizing the average of spring and summer water quality(Netusil et al. 2014, Walsh et al. 2017).

There is no single accepted best indicator for water quality in hedonic analysis. While

STORET has information on many water quality measurements, we focus on DO as our

primary local water quality indicator. DO is the most common measure of water quality

in research on water pollution’s economic impacts (Keiser & Shapiro 2017), and it is a key

indicator of nutrient pollution. It measures the amount of oxygen in water and is essential to

a healthy ecosystem. Water quality measures used in past hedonic studies include dissolved

oxygen, fecal coliform, total suspended solids, dissolved inorganic nitrogen, pH, Secchi depth

and harmful algal concentrations (Leggett & Bockstael 2000, Poor et al. 2001, 2007, Netusil

et al. 2014, Walsh et al. 2011, 2017, Wolf & Klaiber 2017)7. The existing literature argues

7Exploring the sensitivity of our results to the choice of water quality indicators is an important issue
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that water quality measurements most visible to people, such as clarity and turbidity, are

most likely to explain variation in property prices. Areas with low DO would have noticeable

impacts, such as decreased number of aquatic animals, or even fish kills. DO measures an

important consequence of nutrient pollution. It is critical for the survival of fishes, and

water quality that meets the criteria for fish also meets the criteria for most other beneficial

uses and is often of good ecological status (The Environmental Protection Agency 2001).

A DO concentration of 5 mg/L is a critical value for fish survival; at lower concentrations,

salmonid fishes will be affected (Environmental Protection Agency 1994). Thus, we also

create a dummy variable indicating whether the DO level is above 5 mg/L or not. Table

2 shows that the mean dissolved oxygen value in our sample is 5.82 mg/L, with about

35 percent of properties near waters that have less than 5 mg/L dissolved oxygen, on average.

For the recreational demand model, we use DO values from STORET monitors near

fishing locations located in Tampa Bay and also seagrass acreage from the Tampa Bay

Estuary Program (TBEP) (Johansson 2016). Tampa Bay seagrass meadows have become

an important issue in the past three decades as scientists and environmental managers have

worked to reverse the effects of nutrient pollution upon this important habitat. In 1997, the

TBEP coordinated the creation of a bay-wide fixed transect seagrass monitoring program.

The primary goal of the program is to document temporal and spatial changes in seagrass

species composition, abundance, and distribution along a depth gradient. Data collection

from 60 transects began in 1998. Currently, 62 transects are monitored due to revisions

in transect selection and location(Florida Fish and Wildlife Conservation Comission 2003).

Tracking the attainment of Bay-segment-specific targets for seagrass coverage provides the

framework from which Bay management actions are developed and initiated (Sherwood &

Kaufman n.d.). Note that, while seagrass coverage is an important positive indicator of

ecosystem health and fish abundance, it could also have disamenity value to anglers because

plants can catch on their fishing lines or propellers (Guignet et al. 2017).

Following the methods we used to define water quality of local water bodies, we spatially

join all monitors within 3 km radius of a fishing site and calculate the annual mean DO

of each year as the water quality of the site. We also match fishing sites with the closest

seagrass transects within 11,000 m as another measure of water quality. Seagrass transects

spread out around coastal lines in Tampa Bay. We exclude seagrass transects over 11,000

m from fishing sites since we don’t want to spatially join the fishing sites that locate along

the west coast of Pinellas county with seagrass transects in Tampa Bay (Figure 4). The

for future work.
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locations of Tampa Bay water quality monitors can also be found in Figure 4. The mean

DO level in Tampa Bay is 6.38 mg/L and the variance is smaller than DO in local waters

(Table 2). One reason could be that DO monitors in Tampa Bay also include water quality

monitors in the Gulf of Mexico, part of which belongs to the Tampa Bay watershed (Figure

2); the Gulf has better water quality than the Bay. Moreover, monitors are concentrated

near Pinellas county where the variance can be small. The average acreage of seagrass is

about 29,920 ha from 1998-2014 (Table 2).

For proximity, we calculate each property’s distance to the closest local water bodies and

the distance to Tampa Bay in ArcGIS. We define ponds, lakes, wetlands, rivers, swamps,

reservoirs and canals as local water bodies. Water shapefiles are obtained from the Tampa

Bay Water Atlas website (University of South Florida Water Institute 2017). The Atlas

contains 749 water resources which includes 12 bays and 506 lakes and 230 rivers and the

Gulf of Mexico. It derived data from the 1:24,000 USGS National Hydrography Dataset.

Table 3 divides observations by our principal independent variable, the DO level in local

water bodies. As Table 3 reports, properties near polluted water bodies are older, smaller

and have fewer bedrooms, bathrooms and stories on average. They also are located further

from nearby water bodies and from Tampa Bay. Properties near polluted local water

bodies are also located near the part of Tampa Bay with worse water quality. The mean

percentages of properties that are adjacent to local water bodies and are adjacent to Tampa

Bay are the same across the two groups. The differences across groups in Table 3 highlight

the importance of controlling comprehensively for unobservables in the hedonic model.

5 Methodology

5.1 Random Utility Specification

In the random utility model of site choice, we divide neighborhoods in Tampa Bay into J

zipcodes. There are K recreation sites in Tampa region where households can choose to fish.

Each site has an environmental quality, for instance water quality, qk. For each individual i

who recreates in site k in year t, her utility of recreation can be expressed as a function of

individual characteristics (Xit), site characteristics (Skt) and unobservables (ν) :

Uikt = U(Xit, Skt, ν) (5)
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Past literature recognizes the need to control for unobserved site characteristics in

random utility models(Murdock 2006, Timmins & Murdock 2007, von Haefen & Phaneuf

2008, Melstrom & Jayasekera 2017). Failure to control for unobservables in RUM models

can lead to biased parameter and welfare estimates (Moeltner & von Haefen 2011). One

strategy to account for the unobserved site characteristics in the literature is a two-stage

model. In the first stage,one can incorporate a list of Alternative Specific Constants

(ASCs)–equivalent to site fixed effects– in the basic RUM model. The second stage would

regress the observable site characteristics on the coefficients of the ASCs to generate an

accurate estimate of site characteristics (Timmins & Murdock 2007, Melstrom & Jayasekera

2017). However, because the site characteristic we are interested in is water quality at

fishing sites, which varies across sites and also over time, we use a site fixed effect that cap-

tures the site unobservable characteristics in our random utility model. Following Phaneuf

et al. (2008), we assume the indirect utility for a visit to site k by person i is a linear function.

The preferred RUM specification is:

Vikt = α0 + α1Travelikt + α2WQkt + γt + ηk + νikt (6)

where Vikt represents indirect utility of the fishing trips, Travelikt denotes the round-trip

travel time each individual i takes to recreate in site k in year t. WQkt is the water quality of

the recreation site k in year t. Since all the public access fishing sites are along Tampa Bay,

we use seagrass abundance data from TBEP and dissolved oxygen readings from STORET

monitors located in the Bay to represent water quality. γt is a year fixed effect to capture

variation in recreation utility over time. ηk is a site fixed effect that captures any site

characteristics that vary across sites but not over time. The characteristics could include

the number of boat ramps, or slips, whether the fishing site has lodges, and other things we

assume remain constant over time. νikt is an error term distributed type I extreme value.

We use a conditional logit model that allows us to include alternative-specific characteristics

in the model (Maddala 1983, Cameron & Trivedi 2010).

The expected utility per trip for person i in year t is then:

EVit = ln[
K∑
k=1

exp(V̂ikt)] + C (7)
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where V̂ikt is the observed element of utility, and C is an unknown constant showing that

the absolute level of utility cannot be measured. The average consumer surplus is given by:

E(CS)it =
EVit
α̂1

(8)

Since home buyers can learn the recreational potential of a neighborhood when gathering

information for home purchases, and sellers can advertise this information, our estimate

of recreational utility doesn’t reflect individual heterogeneity. Instead, it can be expressed

as a regional index that varies across market areas and over time. We estimate E(CS) at

the zipcode level, the average recreational consumer surplus from living in zipcode j can be

expressed as the average utility of all person-trips (Njt) originating from the zipcode:

ECSjt = N−1
jt

Njt∑
i=1

E(CS)it (9)

We incorporate this estimated ECSjt into our hedonic housing price model to reflect how

recreational impacts of water quality can be reflected in housing prices.

5.2 Basic Hedonic Specification

In the hedonic property model, each home price is the sum of implicit prices for individual

characteristics of the house. The general form of the hedonic price equation is:

hp = f(S, L,E) (10)

where hp represents the property prices, S denotes the structural characteristics of a property,

L denotes location features, such as neighborhood economic status and school districts, and E

denotes environmental conditions. An environmental condition, like water quality nearby, is

an attribute purchased along with homes, thus variation in this attribute should be reflected

by variation in home prices. In equilibrium the implicit price of environmental quality can

be obtained by taking the partial derivative of hp with respect to E:

pE =
∂hp

∂E
(11)

We start our analysis with standard econometric identification of hedonic analysis using
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pooled data from the three counties:

lnPijbt = β0 + β1Xi + β2lnWQit + β3ECSjt + γbTt + εijt (12)

where we have specified the first stage regression as a log-log form specification with the

inflation-adjusted price of house i sold in zipcode j census block b during year t given by Pijbt

8. lnWQit is the log transformation of water qualities nearby property i at time t. ECSjt is

the estimated recreational value in the household’s zipcode j in year t. Xi is a vector of house-

specific structural characteristics, including number of bedrooms, number of bathrooms,

lot acreage and number of stories. All the specifications include census-block-by-year fixed

effects (γbTt) to control for unobserved differences across space and over time, such as school

district quality, median income or the unemployment rate. εijt is an idiosyncratic error term.

Given data limitations, our Xi vector includes the lot size (in acres), house heated

area (in square feet), age of the house, number of bedrooms, number of bathrooms, and

number of stories. Though there is no hard-and-fast answer of the correct list of structural

variables from the theory, existing studies also include factors such as the presence of pools,

basements, garages, and piers(Walsh et al. 2011, Walls et al. 2015, Walsh et al. 2017, Wolf

& Klaiber 2017). We also estimate a series of regressions to examine the sensitivity of our

coefficients with the dissolved oxygen dummy variable.

5.3 Property Fixed Effect Model

A preferable approach is the repeat sales model (Palmquist 1982). The repeat sales

model differences out unobserved house attributes by focusing on the changes in housing

prices for the same property over time. It has been used to estimate the value of wind power

facilities, air pollution, views, and land use change, and other amenities and disamenities

(Heintzelman et al. 2012, Bajari et al. 2012, Walls et al. 2015, Cohen et al. 2016), but not

8Hedonic theory does not provide guidance on the functional form of the estimated equation. Functional
form is mostly determined by empirical analysis (Freeman et al. 2014). The most important literature on
this issue is Cropper et al. (1988). The authors find that flexible econometric specification for the equilibrium
price function performed best when all variables were included in the model, but simpler functional form, such
as log-log, performed best in the presence of omitted variables(Cropper et al. 1988). Though an important
later study used Monte Carlo analysis to evaluate over 540 different hedonic models and concluded that the
more flexible functional forms, such a quadratic Box-Cox model, outperform the linear, log-linear, and log-
log specifications (Kuminoff et al. 2010), we use a log-log specification so that our results can be comparable
to existing literature. Estimating additional models with different functional forms is an important area for
future work.
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water quality.

In Table 3, the observed characteristics of properties in the two groups differ significantly,

suggesting that unobserved variables could also differ substantially between the two groups.

The property fixed effect model has advantages in controlling for unobservables:

lnPijt = β0 + β1Ageit + β2lnWQijt + β3ECSjt + γjTt + εijt (13)

The main coefficients of interest are β2 and β3. Using dissolved oxygen as the main water

quality measure, we expect β2 to be positive since higher DO means that water quality is

better. We also expect β3 to be positive due the assumption that buyers are willing to pay

higher prices for the properties that offer more and better recreation opportunities. Home

age is the only time-varying property characteristic in our data.

Using only properties with repeat sales in the estimation, αi can remove the effects of

time-invariant omitted variables and controls for temporal shocks. But the repeat sales

model is not without its challenges. First, only a subset of housing units have sold more

than once, given the limited market and time period of the study. Second, homes that sold

more than once may have unique unobserved attributes compared to properties that sold

only once in given study period. Thus, restricting the sample to only repeated sales may

reflect a selective implicit price (Freeman et al. 2014). The 300,000 repeated sales in our

dataset, and 160,000 sales within 3 km of water bodies account for more than 50 % and 30%,

respectively, of qualified sales in our sample, thus they may be reasonably representative of

the housing market in the Tampa metropolitan area.

5.3.1 Fixed Effect Model with Proximity

Although Equation (13) captures the overall effect of water quality degradation on prop-

erty prices, it does not allow us to examine the spatial heterogeneity of water quality impacts

on waterfront and near-water properties. Thus, we employ the following specification:

lnPijt = β0 + β1Ageit + β2lnWQijt + β3lnWQijt × DistancetoWateri

+ β4ECSjt + β5ECSjt × DistancetoTampaBayi + αi + γjTt + εijt
(14)

where DistancetoWateri captures the remaining proximity effect for non-adjacent proper-

ties. Equation 14 allows the impact of DO concentration on the home price to vary with
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adjacency and distance. Note that the independent effects of distance to water are absorbed

in αi in Equation 14.

Equation (14) is the preferred specification in our study. Ecosystem services could

relate to both the selection of a house and neighborhood and the reasons for choosing

a recreation site, and policies often affect the quality of local neighborhoods and local

recreation sites simultaneously (Phaneuf et al. 2008). Water quality at fishing sites

in Tampa Bay, as the main site of recreational use of homeowners in the Tampa re-

gion, may impact local housing prices through the recreation opportunity index term

ECSjt. DistancetoTampaBayi measures the distance of each property to the closest point

of Tampa Bay. The key variables of interest are the interactions between time varying

water quality measures (both locally and the Bay) and the various water proximity measures.

6 Estimation results

6.1 First Stage Recreational Demand Results

Results for the recreational demand model estimation are reported in Table 4. The

estimates are statistically significant and consistent with prior expectations. In general

people tend to visit recreational sites that require less travel time, and with better water

quality (higher DO value). The coefficient on travel cost shows that as the travel time to

a site j increases by 1 minute, the probability of an angler fishing in the site decreases

by about 6%. Anglers from the Tampa region are 9% more likely to recreate at a site if

the DO level increases by 1 mg/L. The coefficient on seagrass abundance is statistically

significant and negative. Though seagrass abundance is an indicator of good water quality

in the Tampa Bay, the negative coefficient may be due to the fact that seagrass can be a

disamenity to anglers. The presence of seagrass can damage fishing boats, we find that a

1 ha increase in seagrass abundance can lower the probability of fishing at a site by 16%.

Using parameters estimated from Equation (6), we then estimated the expected utility

from recreation trips initiating from zipcode j following Equation (8) and Equation (9).

The average value of expected utility (ECSjt) from the RUM model calculated from trips

occurring in each zipcode j year t is 62.61 with a standard deviation of 4.17 (Table 2).

To estimate the marginal effect of DO in Tampa Bay recreational fishing sites, we

recalculated the ECSjt using the coefficient estimate from Table 4 following Equation 7
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through 9. We estimate that if the DO level in Tampa Bay increased by 1 mg/L, the

average ECSjt would increase to 64.08. Given that the mean DO level in Tampa Bay

watershed increases by 11 % during 1998-2014 (Table 3), this increase is associated with

1.72% increase in the expected utility of recreation. In the next section, we incorporate the

recreational utility index into our hedonic models.

6.2 Basic Hedonic Model and Fixed Effect Model Results

Estimation results for the two base specifications from Equation (12) and Equation (13)

are shown in Table 5. The first two columns report estimation results based on Equation

(12), Column 3 reports estimation results based on Equation (13).

The coefficients on the house characteristics have largely expected signs. Homeowners

in Tampa prefer larger and newer homes with more bathrooms but fewer stories and

bedrooms. House prices increase with lot acreage and square footage of heated area.

Adding an additional bathroom adds more value to the house than if the space is used

for another bedroom. Consumers in Tampa don’t seem to value additional bedrooms,

but it could be because we are controlling for square footage of the house, and more

bedrooms mean smaller bedrooms. Adding an additional story to the house, while holding

other things constant, reduces the property price significantly. It may be caused by the

additional heating and cooling costs of multistory homes, and the fact that single-story

homes are less likely to be damaged by severe storms common to the region (e.g. hurricanes).

The classic hedonic models provide counter-intuitive results for both log-transformed

dissolved oxygen and the dissolved oxygen dummy. Column 1 and Column 2 from Table 5

show the results using the classic hedonic model based on Equation (12). Column 1 results

imply that as the dissolved oxygen level increases by 1 percent, the mean property price

is reduced by about 0.027%. Column 2 results indicate that when the DO level in nearby

local water is above 5 mg/L, the mean property price decreases by 0.024%. The coefficient

on the recreation utility index shows that with one unit increase in Recreation Utility Index

(ECSjt), the average property price drops by 7.51%. This is likely due to omitted variable

bias. Lower DO and better recreation opportunities are likely to occur in areas with more

economic activity, easier access to water and more runoff; home values may also be higher in

these areas. While we can only control for a short list of house attributes, even an extensive

list of attributes may not eliminate this problem.
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Turning to the property fixed effect specifications, Column 3 shows that a 10 percent

increase in DO leads to 0.101% increase in mean property prices. This is consistent with

findings in other studies that estimate the impacts of dissolved oxygen on housing prices

(Netusil et al. 2014).

We find both continuous and discrete representations of DO provide important infor-

mation on how residents in Tampa value water quality. The significant positive result from

Column (3) shows the marginal implicit price for DO is 0.0101% of the mean property price

in Tampa. Given the average price of properties, consumers’ marginal willingness-to-pay

for DO is $230 for a 10% increase in DO. There are 55,687 properties near polluted

water (DO < 5mg/L) from 1998-2014, and the mean DO level in their nearby water

bodies is about 4 mg/L. If the mean DO level in all those local waters is increased to

5 mg/L, the economic benefits would be more than $32 million, or about $575 per household.

While we are still working to refine and interpret our estimates, the economic benefit

from improved recreation opportunity may exceed the benefit from improving local water

quality.

6.3 Hedonic Estimation with Proximity

Accounting for proximity to local waters and distinguishing waterfront properties from

nearby properties appears to be important, based on results reported in Table 6. The

proximity variables are converted from meters to thousands of meters. Results from both

Model 1 and Model 2 (Table 6) show that more DO leads to higher property prices, but

the positive impacts diminish as properties move away from the water. The further the

distance of a property from a local water body, the lower is the impact of local water quality

on the property sale prices. But the negative distance results are not robust to the inclu-

sion of more detailed location of polluted local water bodies as shown in Model 3 and Model 4.

Table 7 reports results from the estimation of Equation (14). In both the model with

continuous DO concentrations (Model 1) and the model with the 5 mg/L DO thresholds,

we see positive and significant effects of property prices, positive and significant effects of

improved recreational opportunities on property prices, and the tendency of both effects to

decrease with distance from the relevant water bodies.
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6.4 Robustness Checks

We first compare our hedonic fixed effect models with and without the recreation utility

index (ECSjt). Table 8 shows that the sign and magnitude of coefficients of lnDO and the

DO dummy are consistent across specifications. That is, the magnitude of the estimated

impact of local water quality on property prices does not change when we include the

recreational index in the regressions. This suggests that the two parameters are, in fact,

picking up different aspects of MWTP for water quality improvements. It also suggests

that, prior hedonic estimates of the annually value of local water quality improvements may

not be biased – they are simply not inclusive of recreational benefits to homeowners. Thus,

we are safe to exclude the ECSjt in the following robustness checks for simplification.

As discussed, our main models take the average of all monitors within a 3 km radius

of a property to represent the water quality of local water bodies. Though based on

prior literature (Keiser & Shapiro 2017), this is a somewhat arbitrary choice. To test the

robustness of our results, we estimate the property fixed effect models using alternative

radii to link properties with water quality monitors nearby: 1 km, 500 m and 300 m. We

also try linking properties with the average annual water quality at the nearest monitor.

We exclude the waterfront and bayfront dummies in these specifications to simplify the

estimation. Table 9 shows the results of these robustness checks, which indicate that our

findings are robust to these alternative methods. The signs of the coefficients for the DO

dummy are all positive. In addition, the property value effects of local water quality get

larger as the radius gets tighter, consistent with previous literature (Walsh et al. 2011, 2017,

Wolf & Klaiber 2017), though the effects eventually lose significance due to small numbers

of observations for homes within 300 m of one or more monitors 9.

The closest monitors also report positive but insignificant results (Row 5). This is the

method widely used in existing literature to link property sales with water quality data.

One reason for our insignificant result could be that we do not restrict our sample to

properties near water. Thus, the closest monitor method links some properties to monitors

relatively far away. While the existing literature takes advantage of the closest monitors

9When we spatially join properties with monitors within a 300 m radius, we end up with only 1873
property sales locate near water bodies with DO readings. This is one of the challenges in applying a fixed
effect model in hedonic analysis. The limited number of repeat sales in the three counties restricts our ability
in to focus on the local water quality in a smaller area around each property.
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method by limiting the sales to properties within 1 km from water bodies, they also end

up with smaller sample sizes that are not suitable for fixed-effect models. Thus, there is a

trade-off between the use of fixed effect models in correcting for omitted variable bias, and

spatial precision in identifying the impacts of local water quality.

The past literature presents several options to represent the impact of the inter-temporal

variation in water quality on home-buyers’ decisions. The popular approach is to use the

average over the year the home was sold, and it is the approach we take in the main analysis

(Gibbs et al. 2002, Leggett & Bockstael 2000, Poor et al. 2007, Walsh et al. 2011). Netusil

et al. (2014) use wet season and dry season indicators and find that dry season (summer)

water quality is more relevant to homeowners since residents are more likely to recreate in

summer (Netusil et al. 2014). Walsh et al. (2017) compare the average water clarity of

spring and summer in the years of and prior to the home sale (Walsh et al. 2017). They also

compare 1 year and 3 year averages and find that the 3 year average generally has a larger

implicit price, but the longer temporal window may capture more than just the impact of

water quality. When we substitute spring and summer water quality for our annual averages,

we find that the signs, significance levels and magnitudes of the main coefficients are almost

identical to our main estimates. These results may be caused by the fact that weather in

Florida is warm for most of the year, so residents may recreate year-round. These results

are not included in the tables, but are available on request.

7 Conclusion

Taken together, our integrated two stage model and robustness checks suggest that water

quality improvements indicated by increases in DO, improve both recreational amenities

and aesthetic amenities, and that homeowners in Tampa Bay have significant MWTP for

both of these improvements. Over 1998-2014, the average DO level in the Tampa Bay

watershed increased by 11%. From the first stage estimation, an 11% increase in DO level

in Tampa Bay is associated with a 1.72% rise in the expected utility of recreation living

in neighborhood j in year t. From the second stage estimation, the 1.72% increase in

recreation utility index is associated with about 22.45% rise in the average property price.

Improvement of recreational water quality in Tampa Bay over this period may create a high

economic benefit, but we are still working on refine and interpret our results.

For the 11% local water quality increase observed between 1998-2014, willingness-to-pay

is $253 per property. Applying these findings to a larger-scale improvements in local water
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quality could have large economic benefit. There are total of 55,687 property sales near

polluted water (DO < 5 mg/L) from 1998-2014, the 11% increase in mean DO level since

1998 yields a economic benefit of $14 million for these households. The mean DO level in

their nearby water bodies is about 4 mg/L. Improving the mean DO levels of these waters

from 4 mg/L to 5 mg/L could result in over $32 million in economic benefit.

Though our results are preliminary, homeowners appear to value recreational benefits

of pollution reductions more than local amenity benefits. Consistent with the existing

literature, we also find that water quality impacts on nearby property prices diminish

with distance from the polluted water, whether through recreational amenities or aesthetic

amenities.

When applying hedonic analysis to evaluate water quality to inform cost-benefit analysis,

excluding the MWTP for recreational benefits of water quality improvements would lead to

an underestimate the value of water quality improvements to homeowners. The two effects

appear to be separable in Tampa Bay, suggesting prior hedonic estimates of the value of

water quality may be unbiased estimates of local amenity values, but that they exclude the

potentially much larger regional recreational values expressed in housing prices.

Further work on our agenda includes using a residential sorting model, rather than a

RUM, in the first stage to account for potential endogeneity in recreation demand model.

Similar to the endogeneous congestion analysis in Timmins & Murdock (2007), water quality

in recreation sites can also endogenously affect recreation demand. We also plan to test the

more flexible quadratic Box-Cox functional form to the hedonic model and compare it with

the log-log form presented in this paper. Kuminoff et al. (2010) find that the Box-Cox form

outperforms the linear, log-linear, and log-log specifications. Third, STORET has many

water quality indicators, such as fecal coliform, chlorophyll a, turbidity, total nitrogen and

total phosphorous. We will explore the possibility that homeowners value indicators other

than DO, including the Water Quality Index used by the EPA.

This work adds to the literature on understanding how people value water quality im-

provements, especially nutrient pollution abatement. Dead zones, as consequences of nu-

trient pollution, cause large amounts of economic damages each year in the United States

and elsewhere, and many federal and state regulations have been implemented to tackle this

problem. Further work to help policymakers better understand how people value nutrient

pollution abatement can contribute to more comprehensive evaluation of these regulations.
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Figure 1: Properties and Water Quality Monitors in Manatee County
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Figure 2: Map of Study Area is Tampa Bay watershed, Florida
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Figure 3: Dissolved Oxygen Trend 1998-2014

Notes: Graphs show the linear dissolved oxygen trend which also controls for year fixed effects and monitoring

site fixed effects. Standard errors are robust.
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Figure 4: Map of Fishing Sites and Population Center of ZCTAs
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Figure 5: Map of Water Quality and Repeated Property Transactions Data
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Table 1: Water Pollution Basic Descriptive Statistics

Dissolved Oxygen

mean 5.94026

min 0

5th percentile 1.68

95th 8.89

max 28740

# of

obs (without missing) 209336

monitoring sites 5913

mean readings per monitor per year 53

mean readings per monitoring site 443

mean years per monitoring site 8

missing 44

yearly average

# of obs 22714

mean 5.92772

min 0

5th percentile 2.5265

95th percentile 8.725

max 10.8
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Table 2: Descriptive Statistics

Variable N Mean Standard Deviation Min Max

Water quality measures
Local dissolved oxygen (DO) 161388 5.82 3.95 0.18 104.00
Tampa Bay DO 161388 6.38 0.97 3.74 9.02
Dummy for local DO 161388 0.35 0.48 0.00 1.00
Seagrass acreage 161388 29920.58 4418.42 24843.00 40297.00

Recreation demand
Travel time 161388 57.22 35.31 1.64 261.34
Estimated recreation demand index 149542 62.61 4.17 51.35 67.01

Distance to water
Distance to Tampa Bay 161388 15348.79 15356.15 0.00 120557.70
Distance to water bodies 161388 917.11 1077.42 0.00 38217.63

Property properties
Sale price (2014 dollar) 161388 230561.50 154648.10 5262.23 1541511.00
Number of repeat sales 161388 2.56 0.76 2.00 7.00
Repeat sales – Hillsborough 76846 2.62 0.79 2.00 7.00
Repeat sales – Pinellas 68846 2.56 0.76 2.00 6.00
Repeat sales – Manatee 15696 2.31 0.56 2.00 6.00
Year 161388 2005.79 4.44 1998.00 2014.00
Property age 161385 31.86 21.22 1.00 133.00
Number of bedrooms 76846 3.21 0.81 0.00 8.00
Number of bathrooms 76846 2.09 0.68 0.50 6.50
Number of stories 76846 1.18 0.41 0.00 6.00
Heated area 76846 1756.02 669.49 400.00 6191.00
Lot acreage 92529 0.27 0.41 14.55 24872.22
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Table 3: Summary Statistics by DO Level in Nearby
Water Bodies

Variable DO >5mg/L DO<5mg/L

DO level 6.786488 3.987896***
(4.557541) (0.793955 )

Seagrass acreage 30600.63 28629.76***
(4667.104 ) (3562.314)

Property age 30.78656 31.5763***
(20.59694) (23.18531)

Price in 2014 dollar 236733.3 214490.5***
(158108.4) (139122.1)

Distance to local water 884.7475 978.5272***
(1111.28 ) (1007.198)

Distance to Tampa Bay 14370.69 17205.37***
(13731.78) (17895.23 )

Local water front 0.0480979 0.0470128
(0.2139742 ) (0.2116681 )

Tampa Bay front 0.0106432 0.0112055
(0.102616) (0.1052622 )

N 105,701 55,687

Number of bedrooms 3.261176 3.142298***
(0.8025294) (0.8172554)

Number of bathrooms 2.125861 2.050403***
(0.6617159) (0.7032632)

Number of stories 1.181847 1.173358***
(0.4053854) (0.4065889)

Heated area 1796.238 1707.23***
(670.4052) (665.1376)

Lot acreage 0.2791506 0.2304873***
(0.4192332) (0.2588822)

N 42,126 34,720

Note: Means, with standard deviations in parentheses, for ob-
servations used in regression analysis. Asterisks in column 2
indicate significant difference in means between the two groups,
according to t-test for difference in means.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 4: First Stage Recreation Demand Model

Fishing dummy

Travel cost (minutes) -0.0635∗∗∗

(-133.15)

Dissolved oxygen (mg/l) 0.0900∗∗∗

(9.57)

Seagrass abundance -0.160∗∗∗

(-14.79)

Site FE Yes

Observations 1,738,137

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Second Stage Hedonic Estimations

(1) (2) (3) (4)
Model 1 Model 2 Model 3 Model 4

ln(DO) -0.0265∗∗∗ 0.0101∗∗∗

(0.00355) (0.00261)
DO >5mg/L -0.0236∗∗∗ 0.00785∗∗∗

(0.00312) (0.00214)
Recreation demand index -0.0751∗∗ -0.0775∗∗ 0.206∗∗∗ 0.203∗∗∗

(0.0278) (0.0278) (0.0348) (0.0348)
Property age -0.00359∗∗∗ -0.00360∗∗∗ -0.0108∗∗∗ -0.0108∗∗∗

(0.000143) (0.000143) (0.00303) (0.00303)
Lot acreage 0.0287∗∗∗ 0.0294∗∗∗

(0.00674) (0.00676)
Heated area 0.000556∗∗∗ 0.000556∗∗∗

(0.00000619) (0.00000618)
Number of bedrooms -0.0276∗∗∗ -0.0278∗∗∗

(0.00377) (0.00377)
Number of bathrooms 0.0955∗∗∗ 0.0953∗∗∗

(0.00539) (0.00539)
Number of stories -0.0583∗∗∗ -0.0584∗∗∗

(0.00650) (0.00650)

N 65683 65683 144933 144933
R-squared 0.734 0.734 0.931 0.931

Standard errors in parentheses and have been clustered at property level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Hedonic Estimation with Proximity to Local Water

Variable
(1)
Model 1

(2)
Model 2

(3)
Model 3

(4)
Model 4

ln(DO) 0.0332*** 0.00779
(0.00425) (0.00627)

ln(DO)× Distance to local water -0.000972***
(0.000116)

ln(DO)× Waterfront 0.0105 0.00518
(0.00681) (0.0117)

Property age -0.0116*** -0.0116*** -0.0116*** -0.0116***
(0.00271) (0.00272) (0.00272) (0.00272)

DO > 5mg/L 0.0231*** 0.00555
(0.00289) (0.00677)

DO > 5mg/L× Distance to local water -0.000990***
(0.000102)

DO > 5mg/L× Waterfront 0.0159* 0.00773
(0.00727) (0.00966)

ln(DO)× Distance from 0− 0.2km 0.00593
(0.0107)

ln(DO)× Distance from 0.2− 0.4km 0.0109
(0.0107)

ln(DO)× Distance from 0.4− 0.6km -0.00615
(0.0113)

ln(DO)× Distance from 0.6− 0.8km 0.0133
(0.0126)

ln(DO)× Distance from 0.8− 1km 0
(.)

ln(DO)× Distance > 1km 0.0134
(0.0118)

DO > 5mg/L× Distance from 0− 0.2km 0.000532
(0.00770)

DO > 5mg/L× Distance from 0.2− 0.4km 0.00380
(0.00762)

DO > 5mg/L× Distance from 0.4− 0.6km -0.0107
(0.00811)

DO > 5mg/L× Distance from 0.6− 0.8km 0.00292
(0.00871)

DO > 5mg/L× Distance from 0.8− 1km 0
(.)

DO > 5mg/L× Distance > 1km 0.00211
(0.00770)

Property FE Yes Yes Yes Yes
Census block * Year FE Yes Yes Yes Yes
N 159382 159382 159382 159382
R-squared 0.931 0.931 0.931 0.931

Standard errors are in parenthesis and have been clustered at the property level.

* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 7: Hedonic Estimation with Recreation Utility Index

(1) (2)
Model 1 Model 2

ln(DO) 0.0141∗∗

(0.00457)
ln(DO) × Distance to local water monitors -0.00168

(0.00141)
DO > 5mg/L 0.00793∗

(0.00371)
DO > 5mg/L × Distance to local water monitors -0.000197

(0.00112)
ECSjt 0.249∗∗∗ 0.246∗∗∗

(0.0354) (0.0354)
ECSjt × Distance to Tampa Bay -0.0000908∗∗∗ -0.0000904∗∗∗

(0.0000118) (0.0000118)
Property age -0.0109∗∗∗ -0.0109∗∗∗

(0.00305) (0.00305)

N 144933 144933
R-squared 0.931 0.931

Standard errors in parentheses and have been clustered at property level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Hedonic Fixed Effect Models With and Without Recreation Utility Index

(1) (2) (3) (4)
Model 1 Model 2 Model 3 Model 4

ln(DO) 0.0101∗∗∗ 0.00971∗∗∗

(0.00261) (0.00242)
DO >5mg/L 0.00785∗∗∗ 0.00632∗∗

(0.00214) (0.00203)
ECSjt 0.206∗∗∗ 0.203∗∗∗

(0.0348) (0.0348)
Property age -0.0108∗∗∗ -0.0108∗∗∗ -0.0116∗∗∗ -0.0116∗∗∗

(0.00303) (0.00303) (0.00272) (0.00272)

N 144933 144933 159382 159382
R-squared 0.931 0.931 0.931 0.931

Standard errors in parentheses and have been clustered at property level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Estimated Coefficients on Dissolved Oxygen dummy with Different Methods in Defining
Local Water Quality

(1)
Model with No Proximity

(2)
Model with WQ and Proximity

(3)
Model with Seagrass

3km monitors 0.00632*** 0.00291 0.0341
(N=159,382) (0.00203) (0.00246) (0.00246)
1km monitors 0.0187*** 0.0226** 0.0229***
(N=33,415) (0.00541) (0.00689) (0.00692)
500m monitors 0.0339*** 0.0454*** 0.0454***
(N=18,341) (0.00735) (0.00989) (.00989)
300m monitors 0.0226 0.0318 0.0327
(N=1,873) (0.02409) (0.03722) (0.03717)
Closet monitors 0.000363 0.00626 0.00661
(N=15,411) (0.0114) (0.0136) (0.0136)

Standard errors are in parenthesis and have been clustered at the property level.

* p < 0.1; ** p < 0.05; *** p < 0.01.
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