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Abstract	
	
The	quantum	cognition	research	programme	concerns	the	application	of	quantum	probability	theory	
(the	rules	for	how	to	assign	probabilities	to	events	from	quantum	mechanics,	without	any	of	the	physics)	
to	cognitive	modelling.	Quantum	cognitive	models	have	been	applied	to	several	areas	of	psychology	and	
we	provide	a	representative	overview,	with	coverage	in	perception,	memory,	similarity,	conceptual	
processes,	causal	inference,	constructive	influences	in	judgment,	decision	order	effects,	conjunction/	
disjunction	fallacies	in	decision	making,	and	other	judgment	phenomena.	A	challenge	in	this	review	is	
that	the	application	of	quantum	theory	in	each	area	comes	with	its	own	unique	challenges	and	
assumptions.	We	present	the	empirical	findings	driving	the	application	of	quantum	models	for	each	area	
without	theory,	where	this	is	possible,	to	allow	an	appreciation	of	the	empirical	drivers	of	model	
application;	we	discuss	the	quantum	cognitive	models	in	a	way	which	allows	consideration	of	their	key	
features;	we	then	cast	a	critical	eye	on	the	models	and	explore	comparisons	with	non-quantum	models.	
Our	critical	assessment	of	quantum	modeling	work	is	aimed	at	helping	us	answer	questions	such	as	is	it	
worth	persevering	with	quantum	cognition	models,	what	are	the	main	weaknesses	of	such	models,	and	
what	is	their	promise.		
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1.	Introduction	
In	2018	the	quantum	cognition	research	programme	turned	23	years	old	(one	can	consider	Aerts	&	
Aerts,	1995,	as	the	first	major	publication	in	this	programme).	It	is	a	good	time	to	consider	questions	
such	as	what	has	the	quantum	cognition	research	programme	achieved,	what	are	its	further	prospects,	
and	how	does	it	relate	to	other	influential	research	traditions	in	cognitive	science.		
	 We	call	quantum	cognition	the	application	of	quantum	probability	theory	to	cognitive	theory,	
where	quantum	probability	theory	refers	to	the	rules	for	probabilistic	inference	from	quantum	
mechanics,	without	any	of	the	physics	(for	introductions	suited	to	psychologists,	in	decreasing	
complexity,	see	Busemeyer	&	Bruza,	2011,	Yearsley,	in	press,	Pothos	&	Busemeyer,	2013;	for	
introductory	treatments	for	physicists	see	Hughes,	1989,	Isham,	1989).	In	all	the	work	we	review,	there	
is	no	assumption	regarding	physical	quantum	structure	at	the	neurophysiological	level:	we	assume	a	
fully	classical	brain,	such	that	neuronal	processes	can	give	to	quantum-like	structure	at	the	macroscopic	
level.	Thus,	the	quantum	cognition	research	programme	as	defined	here	is	non-overlapping	with	the	
controversial	quantum	brain	hypothesis	(Hameroff,	2007;	Litt	et	al.,	2006).	One	may	wonder	why	the	
issue	of	neural	implementation	is	challenging	particularly	for	the	quantum	cognition	research	
programme.	For	example,	one	would	not	start	an	overview	of	classical	probability	theory	in	cognition	
with	a	statement	regarding	neuronal	application.	The	answer	is	that	characteristic	quantum	effects,	such	
as	ontic	uncertainty	or	spooky	action	at	a	distance,	are	often	thought	to	require	a	quantum	physical	
system,	which	would	preclude	relevance	in	a	classical	brain.	However,	we	shall	see	that	the	application	
of	quantum	theory	in	psychology	eschews	such	issues	and,	indeed,	effects	which	may	appear	weird	for	
physical	systems	may	have	familiar	interpretations	(such	as	contextuality).			
	 Quantum	probability	theory	is	a	set	of	rules	for	how	to	assign	probabilities	to	events.	
Epistemically	it	is	hardly	different	from	the	more	influential	classical/	Bayesian	probability	theory.	The	
latter	has	led	to	a	fertile	research	tradition,	successful	both	in	its	descriptive	coverage	and	a	priori	
justification	(e.g.,	Griffiths	et	al.,	2010;	Lake	et	al.,	2015;	Oaksford	&	Chater,	2007;	Tenenbaum	et	al.,	
2011).	However,	classical	probability	theory	is	just	one	way	to	assign	probabilities	to	events.	Even	
outside	psychological	efforts	to	extend	probability	theory	(e.g.,	Shafer,	1976;	Tversky	&	Köhler,	1994),	
there	are	several	systems	for	probabilistic	assignment	available	to	psychologists	(potentially	infinite,	
e.g.,	Sorkin,	1994).	So,	even	if	classical	probability	theory	were	uniformly	successful	in	its	application	to	
cognitive	theory,	why	restrict	ourselves	to	the	first	reasonable	solution	for	probabilistic	inference	we	
developed?	An	alternative	probability	theory	might	be	sometimes	more	successful	than	classical	
probability.	 	

In	fact,	classical	probability	theory	has	not	gone	unchallenged	in	cognitive	modelling.	Tversky	
and	Kahneman	have	been	most	influential	in	pointing	out	discrepancies	between	the	principles	of	
classical	probability	theory	and	behavior,	but	many	others	have	followed.	The	impact	of	Tversky	and	
Kahneman’s	work	is	partly	due	to	experimental	tests	that	challenged	the	most	basic	principles	of	
Bayesian	inference	and	partly	due	to	the	persistence	in	the	conflict	between	Bayesian	prescription	and	
intuition	in	their	experiments	–	even	when	we	are	told	what	is	the	relevant	Bayesian	principle,	it	is	
sometimes	difficult	to	overcome	the	(classically	erroneous)	intuition	(cf.	Gilboa,	2000).	Inconsistencies	
between	Bayesian	principles	and	behavior	are	typically	called	fallacies	and	the	most	common	theoretical	
route	involves	so-called	heuristics	and	biases,	that	is,	individual	principles	that	can	guide	cognition,	that	
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are	not	part	of	a	formal	mathematical	framework,	but	rather	typically	relate	to	other	cognitive	
processes,	such	as	attention,	memory,	or	similarity.	Such	heuristics	and	biases	have	themselves	had	an	
extremely	prominent	place	in	psychological	theory	(Nobel	prizes	for	Kahneman	in	2002	and	in	2017	for	
Thaler,	both	for	economics;	e.g.,	Kahneman	et	al.,	1982;	Tversky	&	Kahneman,	1973,	1974,	1983;	
Sloman,	1996).	
	 The	ongoing	debate	between	classical	probability	explanations	and	ones	based	on	heuristics	and	
biases	has	been	influential.	Beyond	purely	descriptive	arguments	(which	are	not	always	straightforward	
to	conclusively	evaluate	because	of	mimicries),	a	general	epistemic	reason	for	preferring	theory	based	
on	heuristics	and	biases	is	that	it	often	provides	bridges	between	psychological	processes,	for	example,	
decision	making	and	similarity.	A	general	epistemic	reason	for	preferring	models	based	on	(classical)	
probability	theory	is	that	it	provides	a	collection	of	coherent,	interrelated	principles	and	either	all	or	
none	of	them	have	to	be	involved	in	psychological	theory.	Note,	even	for	psychological	models	based	on	
classical	probability	theory,	some	non-probabilistic	assumptions	are	needed,	e.g.,	in	terms	of	how	to	
build	representations	from	the	available	information.	This	is	reasonable,	unless	there	are	so	many	such	
assumptions	that	the	distinction	between	a	formal	classical	probabilistic	model	and	a	heuristics/	biases	
one	is	blurred	(Jones	&	Love,	2011).			
	 Regarding	quantum	theory,	it	is	worth	noting	that	physicists	had	been	initially	extremely	
reluctant	to	adopt	quantum	theory	–	they	were	forced	into	it	by	empirical	findings.	Quantum	probability	
theory	works	in	physics	because	the	structure	of	the	theory	matches	the	way	the	universe	works,	even	if	
we	don’t	understand	why.	In	physics,	quantum	probability	has	led	to	several	discoveries,	which	were	
previously	unthinkable,	partly	because	quantum	probability	theory	embodies	a	way	of	thinking	about	
probabilities	different	from	the	classical	one.	The	motivation	for	considering	quantum	probability	theory	
in	cognition	is	analogous:	our	most	basic	point	is	that	there	have	been	several	empirical	findings	in	
psychology	which,	superficially	at	least,	indicate	quantum	structure.	Such	findings	are	often	explained	by	
heuristics,	but	the	application	of	quantum	theory	can	complement	such	explanations	in	terms	of	
quantitative	predictions	and	further	generative	value.	The	quantum	cognition	research	programme	is	
about	exploring	the	potential	of	quantum	probability	in	psychology,	noting	that	it	may	be	the	case	that	
certain	behavioral	findings	may	be	outside	the	scope	of	both	classical	and	quantum	probability	theories	
and	may	require	models	based	on	e.g.	heuristics/biases.			
	 A	final	preliminary	question	is	why	is	a	review	of	quantum	cognitive	models	needed.	There	are	
two	answers.	First,	the	application	of	quantum	theory	in	cognition	is	still	relatively	new,	so	it	is	
important	to	pause,	evaluate,	and	consider	the	merits	of	continuing	with	such	applications.	Second,	
there	is	an	opportunity	at	this	point	to	provide	a	reasonably	comprehensive	review.			
	
2.	What	is	quantum	probability	theory?		
We	begin	with	an	informal	presentation	of	quantum	probability	theory	focused	on	its	key	properties	and	
differences	compared	to	classical	probability	theory.	We	do	so	by	employing	one	of	the	most	famous	
decision	fallacies,	Tversky	and	Kahneman’s	(1983)	conjunction	fallacy.	In	one	of	their	conditions,	
participants	were	told	of	a	hypothetical	person,	Linda	(the	arguably	most	famous	hypothetical	person	in	
decision	research),	who	was	described	in	a	way	to	make	her	look	like	a	feminist,	but	not	like	a	bank	
teller.	Participants	were	asked	to	rank	order	a	number	of	statements	about	Linda,	according	to	how	
likely	these	were.	The	critical	statements	were	that	Linda	is	a	feminist,	Linda	is	a	bank	teller,	and	Linda	is	
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a	feminist	and	bank	teller.	The	results	indicated	that	
𝑃𝑟𝑜𝑏 𝑓𝑒𝑚𝑖𝑛𝑖𝑠𝑡 > 𝑃𝑟𝑜𝑏 𝑓𝑒𝑚𝑖𝑛𝑖𝑠𝑡 & 𝑏𝑎𝑛𝑘 𝑡𝑒𝑙𝑙𝑒𝑟 > 𝑃𝑟𝑜𝑏 𝑏𝑎𝑛𝑘 𝑡𝑒𝑙𝑙𝑒𝑟 . The	conjunction	fallacy	is	
the	finding	that	the	conjunction	is	judged	more	probable	than	one	of	the	marginals.	Note,	the	
conjunction	fallacy	has	been	extensively	replicated	and	withstood	the	test	of	proposals	for	possible	
confounds	or	alternative	explanations	(notably	conversational	implicatures;	e.g.,	Dulany	&	Hilton,	1991;	
Moro,	2009).		
	 The	conjunction	fallacy	is	problematic	for	classical	probability	theory	because	the	probabilistic	
model	in	classical	theory	is	essentially	volumetric,	which	means	that	the	universe	of	possibilities	can	be	
thought	of	as	a	generalized	volume	and	more	specific	questions/	possibilities	are	subsets	of	this	volume.	
Thus,	a	more	complex	possibility	(the	conjunction	between	two	predicates)	can	never	be	more	probable	
a	corresponding	simpler	one	(either	of	the	two	predicates;	Figure	1).	The	classical	impossibility	of	the	
conjunction	fallacy	immediately	becomes	apparent	if	we	recast	the	problem	with	countable	instances,	
for	example,	compare	number	of	days	on	which	it	rained	and	snowed	in	London	in	2017	compared	to	
the	number	of	days	on	which	it	just	rained.	In	Tversky	and	Kahneman’s	(1983)	seminal	demonstration,	
we	have	classical	probabilities	as	subjective	degrees	of	belief,	but	classical	probabilities	based	on	
frequencies	and	classical	probabilities	based	on	subjective	beliefs	are	equivalent	(de	Finetti	et	al.,	1993).		
	

	
Figure	1.	Consider	a	sample	space	of	all	possible	
Linda’s	consistent	with	the	story.	The	ones	for	
which	both	properties	of	bank	teller	and	
feminist	are	true	can	never	be	more	than	those	
for	either	individual	possibility.		

	
Figure	2.	A	caricature	of	Busemeyer	et	al.’s	(2011)	
model	for	the	conjunction	fallacy,	based	on	one-
dimensional	subspaces. 𝜓	is	the	mental	state	and	
F,	BT	the	feminist,	bank	teller	properties.		

	
	 Quantum	probability	theory	is	based	on	subspaces	of	a	large	space	representing	the	universe	of	
possibilities.	In	that	universe	we	can	have	subspaces	of	varying	dimensionalities	corresponding	to	
different	possibilities/	questions.	The	relation	between	subspaces	typically	needs	to	be	specified	and	any	
probabilistic	computation	depends	on	the	state	of	the	system	under	consideration.	Psychologically	the	
system	typically	corresponds	to	the	mindset	of	the	participant	prior	to	a	probabilistic	inference.	
Classically,	the	mindset	of	participants	is	typically	not	explicitly	specified,	though	such	information	can	
be	introduced	through	conditionalization.		
	 Figure	2	shows	a	caricature	of	the	quantum	model	for	the	conjunction	fallacy	(Busemeyer	et	al.,	
2011).	Several	simplifications	are	made:	first,	one-dimensional	subspaces	are	employed	to	represent	the	
possibilities	that	Linda	is	a	bank	teller	or	a	feminist.	For	the	question	of	whether	Linda	is	a	bank	teller,	
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we	have	a	so-called	basis	vector	for	the	possibility	that	she	is	indeed	a	bank	teller	and	another	one	for	
the	opposite	possibility.	The	basis	vectors	corresponding	to	all	outcomes	of	a	question	are	called	a	basis	
set.	Second,	the	overall	space	is	a	two-dimensional	real	vector	space,	instead	of	an	n-dimensional	
complex	space.	Third,	the	mindset	of	participants	prior	to	a	decision	is	represented	by	a	state	vector,	
instead	of	a	density	matrix	which	is	the	more	general	approach.	When	the	state	of	the	system	is	
represented	as	a	state	vector,	then	probabilistic	computation	involves	computing	the	squared	length	of	
the	projection	of	the	state	vector	onto	the	relevant	subspace.	For	example,	if	we	are	interested	in	how	
probable	possibility	A	is,	when	the	system	is	represented	as	|𝜓 1	(or	just	𝜓),	then	we	have	to	compute	
|𝑃!|𝜓 |!,	where	𝑃!	is	linear	operator	computing	the	projection	of	a	vector	to	subspace	A	(it	is	often	
called	a	projector,	projection	operator,	or	measurement	operator),	|𝜓 	is	a	normalized	column	vector,	
and	|𝑃!|𝜓 |!	expressed	as	matrix	operations	gives	𝜓!𝑃!𝜓,	where	𝜓!	is	the	conjugate	transpose	of	𝜓.	
Other	technical	details	are	that	these	vector	operations	take	place	in	a	Hilbert	space,	which	is	a	complex	
vector	space	with	some	additional	properties,	and	that	if	the	system	were	represented	as	a	density	
matrix	𝜌,	probability	for	A	would	be	given	as	𝑇𝑟𝑎𝑐𝑒(𝑃!𝜌),	where	the	trace	operation	sums	diagonal	
elements	of	a	matrix.		

The	Figure	2	representation	shows	that	the	initial	mindset	of	participants	after	reading	the	Linda	
story	is	such	that	they	are	likely	to	consider	Linda	a	feminist	and	not	a	bank	teller,	consistently	with	
Tversky	and	Kahneman’s	(1983)	design.	The	relation	between	the	feminist	and	bank	teller	rays	is	
determined	by	imagining	a	feminist	Linda	(so	placing	the	state	vector	along	the	feminist	ray)	and	
considering	whether	for	such	a	person	we	want	small	or	large	projections	(probabilities)	to	the	bank	
teller	ray.	The	assumption	made	in	Figure	2	is	that	a	feminist	Linda	is	neither	particularly	likely	nor	
particular	unlikely	to	be	a	bank	teller.		

This	brings	us	to	the	first	unique	property	of	quantum	probability	theory	(here	and	elsewhere)	
relative	to	classical	probability	theory.	Questions/	possibilities	in	quantum	theory	can	be	incompatible,	
so	that	certainty	about	one	introduces	unavoidable	uncertainty	about	the	other	and	vice	versa	(in	Figure	
2	a	state	vector	contained	within	the	bank	teller	subspace	has	non-zero	projections	to	both	the	feminist	
and	non-feminist	possibilities).	Incompatible	events	in	quantum	theory	give	rise	to	uncertainty	relations.	
In	physics	such	uncertainty	relations	can	imply,	for	example,	that	it	is	impossible	to	concurrently	know	
the	position	and	momentum	of	a	particle	and	has	led	to	extensive	debate	(for	an	introductory	discussion	
see	Isham,	1989).	In	psychology,	a	basic	way	to	approach	uncertainty	relations	is	that	accepting	one	
possibility	(e.g.,	that	Linda	is	a	feminist)	creates	a	unique	perspective	or	mindset	for	other,	incompatible	
ones	(e.g.,	that	Linda	is	a	bank	teller).	For	incompatible	possibilities,	a	joint	probability	distribution	does	
not	exist	(since	we	cannot	be	certain	for	all	combinations).	In	classical	probability	theory,	possibilities	
can	only	be	compatible,	for	which	we	must	always	specify	a	complete	joint	probability	distribution.	
Compatible	possibilities	exist	in	quantum	probability	theory	too,	but	for	such	possibilities	quantum	and	
classical	predictions	can	converge.		

	Because	uncertainty	relations	require	the	non-existence	of	joint	probability	distributions,	
conjunctions	involving	incompatible	questions	have	to	be	assessed	through	a	sequential	projection	
operation,	for	example,	𝑃𝑟𝑜𝑏 𝐹 & 𝑡ℎ𝑒𝑛 𝐵𝑇 = |𝑃!"𝑃!|𝜓 |!,	where	𝑃!" 	and	𝑃! 	are	projectors	to	the	

																																																													
1	This	is	the	so-called	Dirac’s	Bracket	notation,	because	 𝑎|	is	a	bra	(a	row	vector),	|𝑏 	(a	column	vector)	and	
together	they	make	a	bra-ket,	 𝑎|𝑏 ,	which	is	the	dot	product	between	vectors	a,	b.		
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corresponding	possibilities;	they	are	non-commuting,	i.e.,	𝑃!"𝑃! ≠ 𝑃!𝑃!",	as	the	F,	BT	questions	are	
assumed	incompatible.	In	Figure	2,	the	direct	projection	to	the	BT	subspace	is	shorter	(lower	probability)	
than	the	projection	to	the	F	subspace	first	and	then	to	the	BT	one,	corresponding	to	𝑃!"𝑃!|𝜓 .	Though	
this	caricature	illustration	is	quite	simple,	it	still	provides	an	existence	demonstration	for	how	
|𝑃!"𝑃!|𝜓 |! > |𝑃!!|𝜓 |!	according	to	quantum	probability	theory.	One	question	is	whether	the	
probability	of	F	and	then	BT	in	quantum	theory	are	equivalent	to	a	conditional	probability	BT	given	F	in	
classical	theory.	This	is	not	the	case,	since	in	quantum	theory	|𝑃!"𝑃!|𝜓 |! = |𝑃!"|𝜓! |!|𝑃!|𝜓 |! ≡
𝑃𝑟𝑜𝑏 𝐵𝑇 𝐹 𝑃𝑟𝑜𝑏(𝐹),	so	that	the	notion	of	conditional	probability	in	quantum	theory	(embodied	in	the	
Luder’s	law,	e.g.,	Hughes,	1988)	is	distinct	from	sequential	conjunction.	The	reason	why	sequential	
conjunction	cannot	be	reduced	to	(some	notion)	of	classical	conditional	probability	is	uncertainty	
relations,	that	require	re-introduction	of	uncertainty	with	every	projection.		

Uncertainty	relations	lead	to	interference	effects.	For	example,	
	
|𝑃!"|𝜓 |! = |𝑃!"𝐼|𝜓 |! = |𝑃!"(𝑃! + 𝑃~!)|𝜓 |! = |(𝑃!"𝑃! + 𝑃!"𝑃~!)|𝜓 |!

= |𝑃!"𝑃!|𝜓 |! + |𝑃!"𝑃~!|𝜓 |! + |𝑃!𝑃!"𝑃~!|𝜓 |! + |𝑃~!𝑃!"𝑃!|𝜓 |!

= 𝑃𝑟𝑜𝑏 𝐹 &  𝑡ℎ𝑒𝑛 𝐵𝑇 + 𝑃𝑟𝑜𝑏 ~𝐹 & 𝑡ℎ𝑒𝑛 𝐵𝑇 + Δ	
	
So,	we	end	up	with	an	expression	which	appears	like	the	quantum	analogue	of	the	law	of	total	
probability,	plus	Δ.	Δ	is	an	interference	term,	which	can	be	positive	or	negative,	and	allows	quantum	
probabilities	to	violate	the	law	of	total	probability.		
	 Another	key	characteristic	of	quantum	probability	theory	concerns	the	kind	of	uncertainty	
reflected	in	a	state	such	as	|𝜓 = 𝑎|𝐵𝑇 + 𝑏|~𝐵𝑇 ,	which	is	called	a	superposition	(a,	b	are	called	
amplitudes	and	are	complex	numbers	whose	squared	moduli	are	probabilities).	Such	uncertainty	is	
ontic,	so	that	prior	to	a	measurement	(decision)	there	is	no	reality	regarding	whether	Linda	is	BT	or	~BT,	
and	a	measurement	creates	a	possibility	into	being	(cf.	Atmanspacher	&	Primas,	2003).	For	example,	
post	measurement	the	state	might	be	|𝜓 = |𝐵𝑇 .	Thus,	resolving	a	question	changes	the	state	of	the	
system	and	this	process	is	called	the	collapse	of	the	state	vector.	In	quantum	theory	some	states	can	
incorporate	epistemic	uncertainty	too,	which	reflects	lack	of	knowledge.	By	contrast,	classical	
probability	theory	only	involves	epistemic	uncertainty	(for	a	more	subtle	expression	of	the	difference	
between	classical	and	quantum	uncertainty	see	Griffiths,	2013,	and	Spekkens,	2007).	In	physics,	the	
meaning	of	superpositions	and	the	collapse	of	the	state	vector	has	led	to	extensive	debate.	For	example,	
what	does	it	mean	for	an	electron	to	not	have	a	position	prior	to	measurement?	In	psychology,	if	
anything,	the	situation	is	the	converse,	since	it	is	often	reasonable	to	assume	that	decisions	change	the	
mental	state.		
	 The	state	of	a	quantum	system	can	change	through	time	evolution.	We	distinguish	between	two	
situations,	when	a	system	is	isolated	from	and	when	it	interacts	with	its	environment.	Psychologically,	
this	can	be	related	to	whether	a	task	is	solved	without	or	with	influence	from	the	experiences	or	general	
knowledge	of	a	person.	Unitary	dynamics	and	Schrodinger’s	equation	concern	isolated	systems;	open-
systems	dynamics	and	Lindblad’s	equation	when	there	is	interaction	with	the	environment.	A	key	
property	of	unitary	evolution	is	that	probabilities	keep	oscillating,	that	is,	there	is	always	change	with	
time.	By	contrast,	with	open-systems	dynamics	probabilities	eventually	stabilize	to	some	pattern.	For	
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both	kind	of	dynamics,	the	Hamiltonian	operator	contains	information	for	how	probabilities	change	with	
time.		
	 Finally,	superposition	states	can	be	compositional	or	non-compositional.	Consider	a	participant	
deciding	not	just	whether	Linda	is	a	BT,	but	whether	Jane	is	a	BT	too.	Suppose	that	the	judgment	for	
Linda	is	independent	from	the	judgment	for	Jane.	Then	we	can	write		
	

|𝜓 = 𝑎𝑏|𝐵𝑇!"#$% |𝐵𝑇!"#$ + 𝑎𝑏′|𝐵𝑇!"#$% |~𝐵𝑇!"#$ + 𝑎′𝑏|~𝐵𝑇!"#$% |𝐵𝑇!"#$
+ 𝑎′𝑏′|~𝐵𝑇!"#$% |~𝐵𝑇!"#$
= (𝑎|𝐵𝑇!"#$% + 𝑎′|~𝐵𝑇!"#$% )⨂(𝑏|𝐵𝑇!"#$ + 𝑏′|~𝐵𝑇!"#$ )	

	
That	is,	the	state	for	whether	Linda,	Jane	are	bank	tellers	is	given	as	the	tensor	product	for	the	state	for	
each	person	individually.	Alternatively,	suppose	we	know	Jane	is	a	very	good	friend	of	Linda’s	–	so	that	
we	think	that	Linda,	Jane	would	be	very	similar.	Then,	an	appropriate	mental	state	would	be	|𝜓 =
𝑥|𝐵𝑇!"#$% |𝐵𝑇!"#$ + 𝑦|~𝐵𝑇!"#$% |~𝐵𝑇!"#$ .	Such	a	state	is	called	a	Bell	state	and	it	illustrates	the	key	
quantum	property	of	entanglement.	Here,	a	decision	for	either	Linda	or	Jane	forces	an	outcome	for	the	
other.	Quantum	entanglement	precludes	the	specification	of	a	joint	probability	distribution	for	all	
possible	question	combinations,	that	can	factorize	into	the	probability	distributions	for	each	component	
question.	Put	differently,	entanglement	means	that,	for	component	questions	A	and	B,	we	cannot	write	
the	state	for	the	combined	question	as	|𝐴 ⨂|𝐵 ,	that	is	the	combined	state	cannot	be	constructed	by	
independently	combining	parts	of	the	representation	from	|𝐴 	and	then	|𝐵 .	In	physics,	entanglement	
has	led	to	endless	debate,	because	the	two	systems	can	be	spatially	separated.	However,	when	dealing	
with	mental	states,	entanglement	is	less	philosophically	challenging	(it	can	be	attributed	to	some	
connectedness	between	the	systems,	e.g.,	the	different	component	concepts	of	a	composite	one).		
	 Entanglement	can	allow	supercorrelations.	Consider	two	systems	A	and	B,	and	two	binary	
questions	for	each	system,	A1,	A2	and	B1,	B2.	We	can	compute	expectation	values	(labelling	the	binary	
outcomes	for	each	question	as	±1)	for	all	pairs	composed	of	one	question	from	system	A	and	one	
question	for	system	B.	An	ingenious	result	by	Bell	shows	that	classically	these	expectation	values	have	to	
be	bounded	as	follows	 𝐸[𝐴1,𝐵1] + 𝐸[𝐴1,𝐵2] + 𝐸[𝐴2,𝐵1] − 𝐸[𝐴2,𝐵2] ≤ 2	(this	is	the	CHSH	form	of	
the	Bell	inequality,	Clauser	et	al.,	1969;	Bell,	2004).	Here,	classical	means	that	the	two	systems	can	be	
perfectly	correlated	or	anticorrelated,	but	that	the	two	systems	do	not	interact	when	measured.	Bell	
showed	that	if	A,	B	are	described	with	a	quantum	entangled	system	there	are	pairs	of	questions	for	
which	the	Bell	bound	is	exceeded	(and	another	bound	applies,	the	so-called	Tsirelson	bound).	In	this	
sense,	entangled	quantum	systems	supercorrelate.		
	 Overall,	the	key	features	of	quantum	theory	that	lend	themselves	to	psychological	application	
are	primarily	interference	effects,	the	collapse	of	the	state	vector,	entanglement,	and	supercorrelations,	
though	of	course	these	features	are	closely	inter-dependent.	Physicists	have	sought	to	reduce	all	of	
quantum	theory	into	a	single	fundamental	feature	(e.g.,	superposition;	Harding	2001),	but	such	
considerations	are	beyond	the	present	scope.	Table	1	summarizes	the	main	terms.		
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Table	1.	A	summary	of	the	main	terms	in	quantum	theory.		
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3.	How	can	quantum	structure	emerge	from	a	classical	brain?		
	
We	could	also	ask	‘how	can	classical	probabilities	emerge	from	the	brain’.	There	is	no	more	mystery	for	
how	quantum	probabilities	emerge	at	the	cognitive	level,	than	for	e.g.	classical	probabilities.	All	the	
applications	considered	in	this	work	employ	quantum	theory	as	a	set	of	computational	principles	to	
build	cognitive	models.	In	the	same	way	quantum	processes	can	be	programmed	on	a	classical	
computer,	so	we	assume	that	quantum	processes	at	the	cognitive	level	can	emerge	from	classical	brain	
neurophysiology.	For	example,	superpositions	at	the	cognitive	level	(i.e.,	the	level	of	considering	
cognition/	behavior,	without	reference	to	neuronal	processes)	are	considered	epiphenomenal	and	their	
quantum	interpretation	is	valid	only	at	the	cognitive	level	(Yearsley	&	Pothos,	2014).		
	 Nonetheless,	some	researchers	have	attempted	to	specify	the	neurophysiological	or	otherwise	
origins	of	quantum	structure	in	cognition.	One	idea	relates	to	Suppes	et	al.’s	(2012)	neural	oscillator	
proposal	for	how	oscillation	patterns	involving	synchronized	neurons	can	correspond	to	stimulus,	
response	associations.	Note,	there	has	been	evidence	that	synchronization	of	firing	rates	amongst	
neurons	can	be	related	to	cognitive	processing	(Eckhorn		et	al.,	1988;	Friedrich	et	al.,	2004).	Neural	
oscillators	have	wave-like	properties	and	so	can	produce	interference	patterns,	arising	from	phase	
differences	between	oscillators.	De	Barros	(2012;	de	Barros	&	Suppes,	2009)	argued	that	such	
interference	patterns	can	produce	the	dynamics	required	for	quantum	models	(they	did	this	specifically	
for	quantum	models	of	question	order	effects,	e.g.,	Wang	&	Busemeyer,	2013;	see	also	Khrennikov,	
2011).	One	question	for	such	proposals	is	whether	there	is	evidence	for	quantum	structure	beyond	the	
observation	that	wave-like	behavior	can	produce	interference.		
	 Busemeyer	et	al.	(2015)	showed	that	quantum	computations	can	be	implemented	with	a	
standard	neural	network.	The	neural	network	implemented	three	steps,	a	computation	of	amplitudes	
from	unitary	evolution,	the	conversion	of	amplitudes	to	probabilities,	and	state	reduction.	
Notwithstanding	the	input	and	output	mapping	capabilities	of	neural	networks	(Churchland,	1990),	this	
work	provides	an	illustration	of	how	a	familiar,	algorithmic	framework	can	produce	quantum-like	
output.		
	 Beim	Graben	and	Atmanspacher	(2006;	Atmanspacher	&	Scheingraber,	1987)	considered	how	
incompatibility	between	classical	questions	can	sometimes	emerge,	if	the	description	of	the	questions	is	
coarse,	so	that	questions	have	some	irreducible	fuzziness	regarding	possible	outcomes.	One	issue	is	
whether	the	kind	of	coarseness	required	to	produce	incompatibility	arises	in	the	way	questions	are	
mentally	represented.		

Finally,	Aerts	and	Sassoli	de	Bianchi	(2015)	proposed	that	the	quantum	probability	rule	in	
cognition	arises	from	averaging.	Consider	a	typical	decision	experiment,	in	which	participants	are	asked	
to	assign	probabilities	to	events.	Suppose	that	different	participants	employ	different	probability	rules	–	
note,	it	is	unlikely	that	each	participant	will	have	his/her	idiosyncratic	system	for	assigning	probabilities	
to	events,	nevertheless	more	plausible	scenarios	can	be	envisaged	as	special	cases	of	this	general	one.	
Invariably,	the	researcher	analyzing	the	data	averages	results	across	participants.	Are	there	expectations	
for	what	would	be	the	form	of	such	an	average?	According	to	Aerts	and	Sassoli	de	Bianchi	(2014)	such	
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an	average	will	be	equivalent	to	the	quantum	rule	for	probabilistic	assignment	and	this	is	why	quantum	
theory	appears	successful	in	cognitive	applications.		
	
4.	Are	quantum	cognitive	models	more	complex	than	classical	ones?		
	
In	quantum	probability	theory	there	are	two	types	of	questions	(incompatible,	compatible)	and	only	one	
in	classical	theory	(compatible).	This	fact	may	tempt	the	inference	that	quantum	theory	is	all	of	classical	
theory	(for	compatible	questions)	and	a	little	bit	more	(for	incompatible	ones),	so	that	quantum	
cognitive	models	are	necessarily	more	complex	than	classical	ones.	This	is	incorrect.	Quantum	cognitive	
models	typically	employ	incompatible	questions	so	that	the	complexity	comparison	involves	a	quantum	
model	with	incompatible	questions	and	a	broadly	matched	classical	one.	The	issue	of	complexity	
concerns	then	how	well	constructed	the	quantum/	classical	models	are.	On	the	few	occasions	when	this	
has	been	studied	in	detail,	the	results	favored	the	quantum	model.	Busemeyer	et	al.	(2015)	were	the	
first	to	employ	a	Bayesian	method	to	quantitatively	compare	matched,	classical	models	for	data	on	
dynamic	consistency	(which	concerns	whether	decision	makers	follow	through	with	plans	made	in	
advance)	and	the	comparison	favored	the	quantum	model.	Trueblood	et	al.	(2017)	compared	a	
hierarchy	of	models	in	a	causal	inference	situation,	including	fully	quantum	and	fully	classical	ones,	with	
deviance	information	criterion	(DIC),	and	analogously	for	Trueblood	and	Hemmer	(2017)	for	results	
concerning	episodic	memory	–	in	both	cases	quantum	models	were	favored.	A	related	issue	concerns	
parameter	recovery	and	quantum	models	have	yet	to	be	evaluated	in	this	respect	(for	a	promising	
demonstration	see	Mistry	et	al.,	in	press).	One	possible	issue	is	that	for	some	models	linear	
transformations	on	parameters	can	give	the	same	output,	because	invariably	probabilities	are	sinusoidal	
functions	(so	that	adding	2𝜋	does	not	alter	results).		
	 Beyond	comparisons	between	specific	quantum,	classical	models,	Atmanspacher	and	Romer	
(2012)	attempted	to	provide	a	general	complexity	analysis	(focused	on	parameter	numbers)	concerning	
quantum	and	classical	models	for	question	order	effects,	where	the	number	of	question	outcomes	and	
questions	can	vary.	They	observed	that	as	this	number	increased,	a	generic	quantum	approach	would	be	
increasingly	less	complex	than	a	matched	classical	one,	because	in	the	former	case	incompatibility	can	
keep	the	overall	representational	dimensionality	low,	but	not	in	the	latter	case.		
	 Overall,	there	is	no	evidence	that	quantum	cognitive	models	are	systematically	more	complex	
than	classical	ones	and	some	arguments	(like	Atmanspacher	&	Romer’s,	2012)	to	the	contrary.		
	
5.	Empirical	research	
The	main	objective	of	this	work	is	to	critically	consider	the	range	of	cognitive	applications	of	quantum	
theory.	We	have	identified	notable	quantum	models	across	perception,	memory,	similarity,	conceptual	
processes,	causal	inference,	constructive	influences	in	judgment,	decision	order	effects,	conjunction/	
disjunction	fallacies	in	decision	making,	and	other	judgment	phenomena.	The	finer	categorization	
relating	to	decision	making	simply	reflects	the	focus	of	quantum	models	and	even	so	there	is	large	
variance	in	section	size.	Note,	these	divisions	are	for	convenience	of	exposition.	For	each	empirical	
domain,	we	will	consider	the	relevant	psychology,	describe	the	quantum	model	with	a	focus	on	the	
aspects	of	quantum	theory	carrying	the	explanatory	burden,	and	present	a	critical	evaluation	and	any	
controversy.	One	issue	will	concern	whether	a	quantum	model	is	aimed	at	providing	an	ostensibly	better	
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explanation	for	previously	known	results	or	whether	they	have	been	employed	in	a	generative	way.	This	
point	deserves	a	few	remarks.	The	main	way	in	which	quantum	models	were	introduced	in	psychology	
concerns	probabilistic	results,	such	as	the	conjunction	fallacy,	which	are	incorrect	with	baseline	classical	
probability	inference,	but	could	be	shown	correct	with	quantum	inference	(Busemeyer	et	al.,	2011;	
Pothos	&	Busemeyer,	2009).	It	is	worth	appreciating	the	significance	of	this	point:	a	result	‘impossible’	
from	a	classical	perspective,	such	as	the	conjunction	fallacy,	would	be	shown	‘correct’	when	employing	
quantum	probabilities.	An	important	contribution	of	the	quantum	cognition	programme	is	exactly	that	it	
revealed	an	alternative	intuition	for	probabilistic	inference	and	correctness	(but	note,	correctness	does	
not	imply	being	normative,	which	is	a	separate	issue,	Pothos	et	al.,	2017).	Notwithstanding	this	point,	
results	such	as	the	conjunction	fallacy	are	now	nearly	35	years	old,	and	there	is	an	onus	on	the	quantum	
cognition	programme	to	reveal	generative	value	too.		
	 The	final	preliminary	point	is	that	certain	empirical	findings	for	which	quantum	models	are	
implicated	have	attracted	intense	debate	and	it	is	difficult	to	make	full	justice	to	each	of	these	debates.	
Inevitably	our	coverage	will	be	selective,	focused	on	the	present	aim,	which	is	evaluating	the	
contribution	of	quantum	models.		
	
5.1	Perception		
	
5.1.1	Relevant	psychology		
We	will	consider	two	studies	in	this	section,	both	relating	to	bistable	perception.	Bistable	perception	
occurs	with	ambiguous	figures,	such	as	the	Necker	cube,	which	can	be	perceived	in	one	of	either	two	
ways,	such	that	each	way	reveals	a	different	interpretation	of	the	figure.	Typically	there	is	a	sensation	of	
effort	in	switching	between	interpretations.		
	 Conte	et	al.	(2009)	employed	a	paradigm	involving	the	sequential	presentation	of	two	
ambiguous	figures	(each	figure	could	be	perceived	in	two	different	ways)	or	the	presentation	of	just	one	
of	the	figures.	It	is	possible	that	seeing	one	figure	first	may	result	in	some	bias	in	perceiving	the	second	
figure	and	indeed	Conte	et	al.	(2009)	reported	a	violation	of	the	law	of	total	probability,	so	that	
𝑝 𝐴! ∧ 𝐵! + 𝑝 𝐴! ∧ 𝐵! ≠ 𝑝(𝐴!)	(A	and	B	refer	to	the	two	figures	and	the	+	and	–	signs	to	the	two	
possible	ways	of	perceiving	them).	
	 Atmanspacher	and	Filk	(2010)	considered	the	consistency	of	changes	in	bistable	interpretation	
across	different	time	points.	Let	us	first	define	three	quantities,	𝑁! 𝑡!, 𝑡! ,	𝑁! 𝑡!, 𝑡! ,	and	𝑁! 𝑡!, 𝑡! ,	
which	correspond	to	the	number	of	cases	in	which	the	stimulus	interpretation	is	different	across	the	
referenced	time	points.	Set	theory	requires	that	𝑁! 𝑡!, 𝑡! ≤ 𝑁! 𝑡!, 𝑡! + 𝑁!(𝑡!, 𝑡!),	which	is	a	form	
of	the	temporal	version	of	the	Bell	inequality.	Atmanspacher	and	Filk	(2010)	outlined	the	kind	of	
empirical	tests	which	would	be	required	to	demonstrate	a	violation	of	such	a	temporal	Bell	inequality,	
based	on	manipulations	which	ostensibly	lead	to	interpretation	switches	with	time.		
	
5.1.2	Quantum	cognitive	models	
Conte	et	al.	(2009)	argued	that	the	violation	of	the	law	of	total	probability	in	their	bistable	perception	
results	indicates	that	the	mental	states	corresponding	to	the	interpretation	of	each	figure	are	
superpositions,	so	that	interference	effects	can	arise.	They	presented	a	simple	quantum	model	which	
provided	good	empirical	coverage.		
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	 Atmanspacher	and	Filk’s	(2010)	quantum	model	for	bistable	perception	specifies	the	dynamics	
of	processing	a	bistable	stimulus	focusing	on	how	the	decay	of	the	mental	state	interacts	with	the	
dynamics	of	observing	the	stimulus.	The	model	involves	two	components,	one	corresponding	to	changes	
in	the	mental	state	when	the	stimulus	is	not	observed	and	another,	called	a	cognitive	update	process,	
changing	the	state	as	a	result	of	observation.	The	decay	process	is	associated	with	the	Hamiltonian	and	
the	observation	one	with	the	determination	of	stimulus	interpretation.	As	long	as	the	Hamiltonian	and	
the	observation	operator	do	not	commute	(since	if	they	do	we	have	trivial	dynamics),	it	is	in	principle	
possible	to	violate	the	temporal	Bell	inequality.	Atmanspacher	and	Filk	(2010)	presented	an	entangled	
mental	state	for	bistable	perception	and	suitable	Hamiltonian,	observation	operators,	which	can	lead	to	
violations	of	temporal	Bell	(the	correlation	between	𝑡!, 𝑡!	could	exceed	those	across	intermediate	time	
points).		
	
5.1.3	Critical	evaluation	and	controversy		
For	Conte	et	al.	(2009),	there	is	a	general	point	to	make	relating	to	any	result	ostensibly	inconsistent	
with	classical	probability	theory,	to	include	violations	of	the	law	of	total	probability	(conjunction,	
disjunction	fallacies;	the	disjunction	effect),	question	order	effects,	and	any	contextuality	effects.	All	
these	results	can	be	reconciled	with	classical	probability	theory	through	appropriate	conditionalization.	
For	example,	regarding	the	conjunction	fallacy,	one	could	write	𝑃𝑟𝑜𝑏(𝐴&𝐵 𝑓𝑚1 > 𝑃𝑟𝑜𝑏(𝐴|𝑓𝑚2),	
where	fm1,	fm2	can	correspond	to	different	frame	of	minds	(Dzhafarov	&	Kon,	in		press).	However,	one	
hardly	ever	encounters	such	arguments,	because	an	arbitrary,	post	hoc	conditionalization	carries	low	
explanatory	power.	We	will	therefore	automatically	discount	such	possibilities	in	subsequent	discussion.		
	 Note	that	classically	conditionalizing	on	e.g.	frame	of	mind	indicates	an	assumption	that	mental	
processing	is	contextual	and	contextuality	is	essentially	how	quantum	theory	provides	an	account	of	
such	results	too:	if	the	A,	B	questions	are	contextual,	processing	the	A	question	first	creates	a	context	
for	the	subsequent	B	question	which	is	different	from	that	when	the	B	question	is	considered	first.	
Kujala	and	Dzhafarov	(2014,	p.2)	noted	for	contextual	variables	that	‘‘these	random	variables	cannot	be	
sewn	together	into	a	single	system	of	jointly	distributed	random	variables	if	one	assumes	that	all	or	
some	of	them	preserve	their	identity	across	different	conditions”.	Quantum	theory	is	hardly	unique	in	
incorporating	contextual	influences.	An	advantage	of	the	quantum	approach	is	that	there	are	specific	
rules	for	relating	different	probability	spaces	arising	from	contextually	(quantum	theory	can	be	thought	
of	as	a	classical	probability	framework,	but	where	there	is	a	need	to	integrate	together	multiple	
probability	spaces;	e.g.,	Hughes,	1989).	
	 Atmanspacher	and	Filk’s	(2010)	work	makes	a	bold	prediction:	in	order	to	violate	the	temporal	
Bell	inequality,	it	has	to	be	the	case	that	participants	do	not	switch	interpretation	across	𝑡!, 𝑡!	and	also	
do	not	switch	between	𝑡!, 𝑡!,	but	then	switch	across	𝑡!, 𝑡!,	which	violates	an	obvious	intuition	of	
transitivity.	The	only	plausible	explanation	for	such	a	pattern	of	results	would	be	that	the	relevant	
mental	state	is	extended	time-wise,	that	is,	it	does	not	have	a	well-defined	trajectory	through	time.	A	
timewise	non-local	mental	state	may	extend,	for	example,	across	both	periods	𝑡!, 𝑡!,	so	that	one	can	no	
longer	assume	that	an	event	at	𝑡!	caused	changes	at	𝑡!.	So,	if	the	predictions	from	this	work	were	to	be	
empirically	confirmed,	this	would	have	implications	for	our	understanding	of	causality	across	time	
(Yearsley	&	Pothos,	2014).	
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	 Precise	predictions	from	Atmanspacher	and	Filk’s	(2010)	framework	for	when	the	temporal	Bell	
inequality	is	likely	to	be	violated	depend	on	the	details	of	how	the	Hamiltonian	and	observation	
operators	are	specified.	Further	work	is	needed	to	motivate	(ideally	pre-fit	with	pilot	data)	the	various	
components	of	the	quantum	model.	Another	issue	is	how	tightly	can	we	make	an	association	between	a	
putative	violation	of	temporal	Bell	and	quantum	processes.	We	fully	discuss	this	issue	in	Section	5.4.2	
but,	briefly,	even	a	classical	system	with	disturbing,	‘clumsy’	measurements	can	lead	to	violations	of	
Bell.	Therefore,	before	a	violation	of	temporal	Bell	can	be	uniquely	associated	with	quantum	structure	at	
the	cognitive	level,	a	number	of	preconditions	need	to	be	tested	(Wilde	&	Mizel,	2012).		
	
5.2	Memory		
	
5.2.1	Relevant	psychology		
We	first	consider	Bruza	et	al.	(2009)	who	outlined	an	empirical	set-up	suitable	for	testing	violations	of	
the	Bell	inequality	in	cued	recall	memory.	Consider	a	cued	recall	experiment	involving	cues	that	can	
have	multiple	senses,	e.g.,	the	cue	“bat”	can	have	an	animal	and	a	sports	sense.	Study	is	divided	into	
parts,	so	that	in	each	part	a	cue	word	is	presented	with	words	which	activate	different	senses	(e.g.,	in	
one	study	part	the	cue	bat	might	appear	with	the	words	ball	and	glove,	so	as	to	activate	the	sports	
context).	Post	study,	two	cue	words	are	presented	individually	with	a	request	to	recall	other	words	from	
the	lists	just	studied,	with	a	view	to	examine	the	word	senses	activated	by	the	cues,	by	interpreting	the	
recalled	words.	The	authors	outline	a	2x2	design	of	cues	(two	cues,	each	of	which	has	two	senses),	
which	can	potentially	lead	to	violations	of	the	Bell	bound.		
	 A	number	of	researchers	have	explored	a	so-called	memory	overdistribution	effect	and	variants	
in	memory	recognition.	In	the	typical	paradigm,	participants	encode	a	set	of	memory	targets,	for	
example,	a	word	list.	In	test	participants	are	presented	with	the	targets,	related	distractors	that	are	
semantically	related	to	the	targets,	and	unrelated	distractors.	Recognition	instructions	can	be	varied	
factorially	with	the	test	items,	for	example,	accept	related	distractors	but	reject	targets	and	unrelated	
distractors.	If	T	symbolizes	targets	and	R	related	distractors	and	probes	are	included	for	the	disjunction	
and	the	marginals,	then	a	key	empirical	finding	is	that	recognition	probabilities	indicate	𝑃𝑟𝑜𝑏 𝑇 +
𝑃𝑟𝑜𝑏 𝑅 > 𝑃𝑟𝑜𝑏(𝑇 ∪ 𝑅),	which	is	a	disjunction	fallacy	(also	called	episodic	overdistribution).	
Classically,	since	the	categories	of	T	and	R	are	mutually	exclusive,	this	is	impossible,	and	we	instead	
require	𝑃𝑟𝑜𝑏 𝑇 + 𝑃𝑟𝑜𝑏 𝑅 = 𝑃𝑟𝑜𝑏(𝑇 ∪ 𝑅).	This	empirical	finding	illustrates	that	some	items	are	
being	remembered	as	both	presented	and	not	presented	(Brainerd	&	Reyna,	2008;	Brainerd	et	al.,	
2010).	Together	with	the	disjunction	fallacy,	we	also	have	a	subadditivity	effect,	which	is	when	the	
probability	of	accepting	an	item	in	mutually	exclusive	and	exhaustive	categories	is	greater	than	one	(so,	
subadditivity	also	indicates	𝑃𝑟𝑜𝑏 𝑇 + 𝑃𝑟𝑜𝑏 𝑅 > 𝑃𝑟𝑜𝑏(𝑇 ∪ 𝑅),	but	in	this	case	there	is	no	overt	
𝑇 ∪ 𝑅	cue).		
	
5.2.2	Quantum	cognitive	models		
Bruza	et	al.	(2009)	aimed	to	illustrate	that	a	quantum	representation	based	on	an	entangled	state,	
matched	to	the	assumptions	of	their	paradigm,	allows	for	violations	of	the	Bell	bound.	All	words	were	
represented	as	rays.		
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	 Regarding	the	memory	overdistribution	effect,	Brainerd	et	al.	(2013)	developed	a	quantum	
representation	model,	for	subadditivity	in	a	particular	three	list	variant	of	the	recognition	paradigm	
(Brainerd	et	al.,	2012).	Each	item	in	the	empirical	test	was	represented	in	a	five	dimensional	Hilbert	
space,	such	that	three	dimensions	corresponded	to	verbatim	features	(mostly	superficial	characteristics)	
for	each	of	the	three	lists,	one	dimension	to	gist	features	(mostly	semantic/	abstract	characteristics,	but	
also	relational,	contextual	information),	and	one	dimension	to	distractor	features.	The	model	in	the	
Brainerd	et	al.	(2013)	work	was	termed	the	QEM	model	(quantum	episodic	memory	model).	Brainerd	et	
al.	(2015)	provided	an	elaboration	of	the	Brainerd	et	al.	(2013)	model	and	presented	it	as	a	formalization	
of	fuzzy	trace	theory	(Reyna,	2008;	Reyna	&	Brainerd,	1995),	which	we	call	QEM+,	abusing	notation	for	
simplicity.	In	the	QEM+,	each	item	is	represented	in	a	three	dimensional	Hilbert	space,	with	basis	
vectors	corresponding	to	verbatim,	gist,	and	other	information	(information	not	matching	the	cue’s	
either	surface	or	semantic	content).	According	to	QEM+,	subadditivity	is	directly	predicted	because	the	
retrieval	probabilities	are	computed	in	a	way	that	the	contribution	from	the	gist	information	appears	
twice	in	verbatim	questions.	Note	that	the	QEM+	could	apply	either	for	incompatible	or	compatible	
memory	measures	(e.g.,	regarding	the	various	probes),	creating	a	need	for	determining	compatibility	
(Section	7).			

Denolf	and	Lambert-Mogiliansky	(2016)	noted	that	in	the	QEM/	QEM+	models	verbatim	
information,	gist	information	etc.	are	represented	with	orthogonal	vectors,	which	makes	them	mutually	
exclusive	(i.e.,	completely	accepting	gist	information	for	a	test	cue	means	completely	rejecting	verbatim	
information).	Instead,	Denolf	and	Lambert-Mogiliansky	(2016)	proposed	a	quantum	memory	model	
called	Complementary	Memory	Types	(CMT)	in	which	the	verbatim	information	and	gist	information	are	
modeled	as	incompatible,	so	that	they	not	commeasurable	and	perfect	knowledge	of	one	introduces	
some	uncertainty	for	the	other.	Denolf	and	Lambert-Mogiliansky	model	(2016)	made	a	symmetry	
assumption	for	the	representation	of	the	gist	information.	In	a	four	dimensional	space,	three	basis	
vectors	corresponded	to	verbatim	information	for	each	one	of	the	three	memorized	lists	(in	the	
experiment	covered	by	the	model)	and	one	to	unrelated	information.	An	alternative	basis	set	
corresponded	to	gist	information.	Gist	information	was	modeled	with	a	single	vector,	with	equal	
amplitudes	along	the	basis	vectors	for	each	memorized	list	and	zero	for	unrelated	information.		

An	approach	based	on	incompatibility	was	further	developed	by	Trueblood	and	Hemmer	(2017;	
see	also	Broekaert	&	Busemeyer,	2017).	In	their	Generalized	Quantum	Episodic	Memory	Model	(GQEM),	
verbatim,	gist,	and	new		information	are	assumed	incompatible.	Each	of	the	three	types	of	information	
corresponds	to	a	two-dimensional	basis,	obviating	the	problem	of	differing	dimensionalities	in	Denolf	
and	Lambert-Mogiliansky	(2016).	Acceptance	probabilities	under	verbatim	and	gist	instructions	are	
computed	by	first	evaluating	acceptance	based	on	gist	information	and,	if	this	produces	a	negative	
outcome,	evaluating	acceptance	on	verbatim	information	(gist	information	has	been	argued	to	be	
processed	more	rapidly;	Brainerd	et	al.,	1999).	An	analogous	assumption	was	employed	with	paradigms	
in	which	training	items	are	presented	in	different	contexts.		
	
5.2.3	Critical	evaluation	and	controversy		
Bruza	et	al.’s	(2009)	work	awaits	empirical	examination,	which	if	provided	would	indicate	that	it	is	not	
possible	to	have	a	four-way	classical	probability	distribution	for	the	different	senses	of	the	recall	words.		
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The	disjunction	fallacy/	subadditivity	in	memory	recognition	have	challenged	standard	
recognition	models,	such	as	the	one-process	signal	detection	model	(Glanzer	&	Adams,	1990),	and	
standard	source	recognition	models,	such	as	the	source	monitoring	model	(Batchelder	&	Riefer	1990),	
which	unelaborated	cannot	predict	these	effects.	By	contrast,	Brainerd	et	al.	(2013)	reported	acceptable	
fits	for	the	QEM	for	the	Brainerd	et	al.	(2012)	data,	when	compared	to	their	own	predominant	model	for	
the	episodic	subadditivity	effect	(the	Overdistribution	model).	Brainerd	et	al.	(2015)	reported	results	
supporting	predictions	from	their	QEM+,	notably	that	it	is	specifically	subadditivity	and	not	
superadditivity	that	is	predicted	and	also	that	empirical	manipulations	which	enhance	reliance	on	gist	
information	and/	or	decrease	influence	from	verbatim	information	should	both	increase	subadditivity.	
Both	QEM	and	QEM+	are	elegant	in	their	parsimony,	but	make	limited	use	of	quantum	features	
questioning	the	necessity	for	quantum	theory.	For	example,	Brainerd	et	al.	(2015)	noted	that	a	key	
assumption	in	fuzzy	trace	theory	is	that	gist	information	allows	the	same	item	to	be	perceived	as	
belonging	to	different	categories,	which	is	why	in	the	QEM+	gist	information	appears	twice	in	retrieval	
probabilities,	producing	subadditivity.		

Denolf	and	Lambert-Mogiliansky’s	(2016)	and	Trueblood	and	Hemmer’s	(2017)	proposals	that	
fuzzy	trace	theory	can	be	elaborated	with	an	assumption	of	incompatibility	between	verbatim,	gist	
information	is	arguably	a	more	significant	contribution	of	quantum	models	in	this	area.	However,	Denolf	
and	Lambert-Mogiliansky’s	(2016)	symmetry	assumption	is	hard	to	justify.		

Denolf	and	Lambert-Mogiliansky	(2016)	reported	coverage	of	both	subadditivity	and	favorable	
comparisons	with	QEM+.	Trueblood	and	Hemmer	(2017)	noted	some	problematic	predictions	from	the	
QEM+.	For	example,	retrieval	probabilities	are	predicted	to	be	equal	under	verbatim	and	verbatim	plus	
gist	instructions,	but	empirical	results	show	the	latter	to	be	higher.	Moreover,	the	QEM+	predicts	a	
higher	probability	of	accepting	a	test	cue	with	verbatim	instructions,	compared	to	gist	instructions,	again	
contrary	to	empirical	data.	Regarding	the	Overdistribution	model,	they	noted	that	the	model	can	cover	
the	episodic	overdistribution	effect,	but	not	the	subadditivity	effect	(the	model	is	underspecified	
regarding	acceptance	probabilities	under	unrelated	new	instructions).	They	conducted	a	hierarchical	
Bayesian	model	comparison	between	their	GQEM	model	and	the	Overdistribution	model,	based	on	a	
new	experiment	using	the	item	memory	variant	of	the	memory	task	(test	cues	can	be	old	or	new)	and	
results	from	Kellen	et	al.	(2014)	using	the	source	memory	variant	(training	cues	presented	in	different	
contexts).	The	former	comparison	favored	the	GQEM.	The	latter	comparison	favored	the	
Overdistribution	model,	but	GQEM	was	shown	to	produce	equivalent	fits	to	the	data.		
	
5.3	Similarity		
	
5.3.1	Relevant	psychology		
Geometric	models	of	similarity	whereby	objects	are	represented	as	points	and	similarity	is	some	
function	of	the	distance	between	them	have	been	hugely	influential	(e.g.,	Nosofsky,	1984;	Shepard,	
1987).	Tversky	(1977)	reported	some	key	challenges	to	such	models.	He	argued	that	similarity	
judgments	can	violate	minimality,	symmetry,	and	the	triangle	inequality	as	well	as	being	subject	to	
contextual	influences	from	the	range	of	stimuli	concurrently	considered	(a	diagnosticity	effect).	He	
proposed	that	violations	of	symmetry	arise	from	differences	in	prominence/	degree	of	knowledge,	so	
that	e.g.	𝑆𝑖𝑚  𝐶ℎ𝑖𝑛𝑎,𝐾𝑜𝑟𝑒𝑎 < 𝑆𝑖𝑚  𝐾𝑜𝑟𝑒𝑎,𝐶ℎ𝑖𝑛𝑎 ,	where	participants	are	assumed	to	have	more	
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knowledge	of	China	than	Korea.	For	violations	of	the	triangle	inequality	he	used	William	James’s	
example,	whereby	Similarity(Russia,	Jamaica)	is	low,	but	Similarity(Russia,	Cuba)	is	high	(because	of	
political	affiliation)	and	Similarity(Cuba,	Jamaica)	is	also	high	(because	of	geographical	proximity),	so	that	
Similarity(Russia,	Jamaica)	<	Similarity(Russia,	Cuba)	+	Similarity(Cuba,	Jamaica).	Finally,	an	example	of	
the	diagnosticity	effect	is	that	out	of	Hungary,	Sweden,	Poland,	the	country	chosen	as	most	similar	to	
Austria	is	Sweden,	but	out	of	Hungary,	Sweden,	Norway,	it	was	Hungary.		

Violations	of	symmetry	have	been	demonstrated	on	multiple	occasions	(e.g.,	Aguilar	&	Medin,	
1999).	However,	despite	the	strong	intuition	for	the	triangle	inequality,	Tversky’s	(1977)	example	
concerns	violations	of	the	triangle	inequality	on	dissimilarities,	not	similarities.	That	is,	the	triangle	
inequality	constraint	(from	an	assumed	metric	representation)	is	that	Dissimilarity(Russia,	Jamaica)	<	
Dissimilarity(Russia,	Cuba)	+	Dissimilarity(Cuba,	Jamaica),	where	dissimilarity	can	be	straightforwardly	
associated	with	distance.	It	is	not	straightforward	to	translate	an	inequality	on	dissimilarities	to	one	on	
similarities.	Tversky	seemed	to	be	aware	of	this	issue	(cf.	Tversky	&	Gati,	1982),	but	it	has	been	ignored	
in	much	of	subsequent	literature.	Considering	options	for	how	to	convert	the	triangle	inequality	on	
dissimilarities	to	similarities,	Yearsley	et	al.	(2017)	derived	a	so-called	multiplicative	triangle	inequality	
(based	on	Shepard’s,	1987,	function	for	relating	distances	to	similarities).	Additionally,	replications	of	
the	diagnosticity	effect	have	been	rare	(Evers	&	Lakens,	2014).		

Finally,	even	though	much	of	the	similarity	literature	has	developed	in	terms	of	point-wise	
comparisons,	researchers	have	recognized	that	matching	parts	between	object	representations	can	
have	a	greater	influence	on	similarity	judgments,	than	mismatching	parts	(e.g.,	Gentner,	1983;	
Goldstone,	1994).		
	
5.3.2	Quantum	cognitive	models		
A	prior	motivation	for	applying	quantum	theory	in	similarity	is	that	it	involves	geometric	representations	
and	geometric	representations	have	consistently	featured	prominently	in	similarity	models	(Nosofsky,	
1984;	Shepard,	1987).	But,	whereas	in	traditional	geometric	models	representation	is	point-wise	(each	
object	corresponds	to	a	single	point),	in	quantum	models	representations	can	be	subspaces.	So,	
quantum	models	have	a	natural	way	to	capture	differences	in	knowledge	between	concepts.	
Additionally,	quantum	probabilities	embody	order	effects	and	are	contextual,	which	are	baseline	
requirements	respectively	for	violations	of	symmetry	and	the	diagnosticity	effect.		

Pothos	et	al.	(2013)	modeled	similarity	judgments	as	quantum	conjunctive	probabilities,	
involving	a	projection	order	matching	the	order	in	which	the	compared	stimuli	are	referenced	and	an	
initial	state	which	is	neutral,	that	is	set	so	that	when	comparing	stimuli	A,	B,	we	have	 𝑃! ∙ |𝜓 ! =
𝑃! ∙ |𝜓 !.	Then	the	model	immediately	produces	e.g.	𝑆𝑖𝑚  𝐶ℎ𝑖𝑛𝑎,𝐾𝑜𝑟𝑒𝑎 < 𝑆𝑖𝑚  𝐾𝑜𝑟𝑒𝑎,𝐶ℎ𝑖𝑛𝑎 ,	as	
long	as	the	dimensionality	of	the	subspace	representing	China	is	greater	than	the	one	for	Korea.	This	
was	proved	in	Pothos	et	al.	(2013)	for	two-dimensional	vs.	one-dimensional	subspaces	and	arguments	
were	offered	as	to	why	this	result	generalizes.	Regarding	violations	of	the	triangle	inequality,	different	
regions	in	a	quantum	space	are	associated	with	different	contexts	(e.g.,	features/	concepts).	So,	using	
Tversky’s	(1977)	example,	if	a	region	of	a	quantum	space	is	consistent	with	the	property	of	Communism,	
then	representations	in	or	close	to	that	region	would	reflect	varying	degrees	of	consistency	with	
Communism.	Therefore,	if	basis	sets	are	arranged	in	a	two-dimensional	space	so	that	one	region	reflects	
Cuba,	sandwiched	between	a	region	for	Russia	and	one	for	Jamaica,	it	is	straightforward	to	see	how	
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triangle	inequality	violations	can	occur	(at	least	on	dissimilarities).	Coverage	of	the	diagnosticity	effect	
relies	on	order	effects	in	non-commuting		projectors.	Pothos	et	al.	(2013)	assumed	that	each	possible	
pairwise	similarity	was	computed	with	the	quantum	similarity	rule,	but	modified	to	include	prior	
projections	to	any	context	stimuli.	So,	in	a	sequence	of	projections	involving	both	the	compared	stimuli	
and	the	context	ones,	differences	in	eventual	selection	were	observed	consistent	with	the	diagnosticity	
effect.			
	 Regarding	similarity	comparisons	sensitive	to	structure,	Pothos	and	Trueblood	(2015)		adapted	
the	quantum	similarity	model	using	the	idea	of	Smolensky	(1990)	for	structure	in	linguistic	
representations	based	on	tensor	products.	For	example,	for	stimuli	having	three	parts	(top,	middle,	
bottom),	such	that	each	part	can	differ	in	color	and	shape,	we	can	write	a	representation	vector	as	
|𝑡𝑜𝑝 𝑝𝑎𝑟𝑡 ⨂|𝑠ℎ𝑎𝑝𝑒 ⨂|𝑐𝑜𝑙𝑜𝑟 + |𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑎𝑟𝑡 ⨂|𝑠ℎ𝑎𝑝𝑒 ⨂|𝑐𝑜𝑙𝑜𝑟 +
|𝑏𝑜𝑡𝑡𝑜𝑚 𝑝𝑎𝑟𝑡 ⨂|𝑠ℎ𝑎𝑝𝑒 ⨂|𝑐𝑜𝑙𝑜𝑟 . 	The	‘part’	vectors	keep	track	of	matching	parts	(and	can	be	
adjusted	to	capture	influence	from	matches	in	place	or	matches	out	of	place,	Goldstone,	1994).	For	

example	if	|𝑡𝑜𝑝 𝑝𝑎𝑟𝑡 =
1
0
0

,	|𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑎𝑟𝑡 =
0
1
0

	etc.	then	in	computing	similarity	there	are	

contributions	only	across	matching	parts;	briefly	this	is	because	
𝑥⨂𝑦⨂𝑧|𝑥′⨂𝑦′⨂𝑧′ = 𝑥|𝑥′ 𝑦|𝑦′ 𝑧|𝑧′ ,	that	is	tensor	product	structure	respects	orthogonality	in	
each	space	individually.		
	
5.3.3	Critical	evaluation	and	controversy		
Pothos	et	al.’s	(2013)	assumption	of	a	mental	state	that	is	neutral	in	relation	to	the	compared	stimuli	
was	justified	as	one	of	uniformed	priors.	For	the	diagnosticity	effect,	incorporating	contextual	influence	
as	prior	projections	takes	advantage	of	quantum	theory’s	contextual	features,	in	that	the	same	question	
has	to	be	considered	differently	depending	on	whether	it	is	considered	in	isolation	or	in	the	context	of	
prior	incompatible	questions;	note	the	final	projection	depends	on	the	entire	projection	sequence.	
However,	there	is	an	issue	of	scalability	when	dealing	with	multiple	contextual	items.		
	 One	can	question	a	representation	scheme	which	assumes	that	concepts	are	represented	as	
incompatible.	The	rationale	is	that	a	sequence	of	projections	corresponds	to	a	train	of	thought,	so	that	
successive	projections	correspond	to	the	mental	state	going	through	different	concepts.	Depending	on	
which	concept	is	currently	considered,	incompatibility	means	that	there	are	differing	perspectives	on	
the	likelihood	of	thinking	about	other	concepts.	For	example,	if	one	is	thinking	about	China	there	is	
uncertainty	for	whether	he/she	will	next	think	about	Korea,	depending	on	the	relation	between	the	
subspaces.		
	 The	main	contribution	of	the	quantum	similarity	model	was	to	show	how	asymmetries	in	the	
extent	of	knowledge	between	concepts	can	be	captured	with	differences	in	subspace	dimensionality	
and	that	this	produces	similarity	asymmetries	in	the	observed	direction.	Even	though	the	model	has	not	
had	generative	value,	the	completeness	of	coverage	of	Tversky’s	(1977)	seminal	results	compares	
favorably	to	that	from	other	predominant	approaches.	For	example,	the	main	issue	with	Tversky’s	
(1977)	contrast	model	is	that	it	involves	two	independent	parameters.	For	violations	of	symmetry,	these	
had	to	be	set	in	a	circumvented	way	(based	on	assumptions	about	the	relative	weighting	of	the	features	
of	the	subject	and	the	referent	in	a	similarity	comparison).	Krumhansl’s	(1978,	1988)	distance-density	
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model	encounters	a	problem	regarding	violations	of	symmetry,	since	adequate	coverage	requires	the	
assumption	that	China	is	similar	to	more	other	countries	than	Korea.	Additionally,	regarding	the	triangle	
inequality,	the	model	incorporates	a	mechanism	of	computing	similarity	within	reduced	subspaces,	
corresponding	to	different	contexts,	but	this	is	underspecified	(e.g.,	how	to	determine	such	subspaces).	
For	symmetry,	Ashby	and	Perrin’s	(1988)	General	Recognition	Theory	required	an	assumption	of	how	
many	other	counties	are	similar	to	Korea	vs.	China	opposite	to	that	of	Krumhansl	(1978)2.	Additionally,	
for	violations	of	the	triangle	inequality,	inequivalent	perceptual	distributions	were	required	for	Russia,	
Jamaica,	and	Cuba,	and	there	are	no	a	priori	reasons	to	anticipate	such	an	assumption.		

Regarding	Pothos	and	Trueblood’s	(2015)	proposal	for	structural	similarity,	currently	this	is	
descriptive	and	its	theoretical	merit	rests	in	revealing	a	common	framework	for	structure	between	
language	(as	in	Smolensky,	1990)	and	similarity.	
	
5.4	Conceptual	reasoning	
	
5.4.1	Relevant	psychology	
It	is	sometimes	the	case	that	a	particular	instance	can	be	a	good	example	of	a	composite	concept,	but	a	
poor	example	of	either	individual	concept.	For	example,	a	goldfish	is	a	good	example	of	the	combined	
concept	pet-fish,	but	a	poor	example	of	either	pet	or	fish	(e.g.,	Hampton	1988a,	b;	Osherson	&	Smith,	
1981;	Storms	et	al.,	1999).	Specifically,	an	overextension	effect	is	when	the	strength	of	category	
membership	for	a	combined	concept	is	greater	than	for	other	individual	concepts;	and	an	
underextension	effect	occurs	when	the	converse	is	true.	Both	these	effects	indicate	violations	of	the	law	
of	total	probability.	Analogous	effects	have	been	observed	for	disjunctive	conceptual	combinations.		
	 Bruza	et	al.	(2015)	addressed	the	question	of	whether	there	is	compositional	structure	in	
conceptual	combination.	They	employed	novel,	ambiguous	conceptual	combinations	composed	of	two	
words,	such	that	each	word	had	two	(fairly)	distinct	meanings,	e.g.,	in	‘boxer	bat’,	boxer	can	refer	to	a	
person	or	a	dog	and	bat	to	a	sporting	equipment	or	an	animal.	Each	participant	received	one	of	four	
primes	(a	single	word),	corresponding	to	the	2	x	2	meaning	possibilities,	and	subsequently	was	asked	to	
interpret	the	ambiguous	concept	and	rate	the	sense	of	each	component	word	that	was	employed.	The	
authors	then	compiled	conditional	probabilities	for	the	interpretation	of	each	concept	combination,	
given	particular	primes.	These	probabilities	can	be	employed	to	test	for	quantum	entanglement,	with	a	
variant	of	the	CHSH	inequality.	Violations	of	CHSH	were	observed,	indicating	non-compositionality,	that	
is,	the	semantics	for	the	conceptual	combination	cannot	be	reconstructed	by	looking	at	the	semantics	of	
each	component	concept	independently.		

Non-compositionality	in	concept	associations	(rather	than	conceptual	combination	as	such)	was	
further	explored	by	Cervantes	et	al.	(in	press).	Participants	were	presented	with	one	A	question	and	one	
B	question,	such	that	A1:	Gerda	or	Troll,	A2:	Snow	Queen	or	Old	Finn	woman,	B1:	Beautiful	or	
Unattractive,	B2:	Kind	or	Evil.	Participant	responses	were	used	to	compute	expectations	e.g.	𝐸[𝐴1,𝐵1],	
																																																													
2	Ashby	and	Perrin	(1988,	p.133)	noted	that	“…for	many	people	North	Korea	is	very	similar	to	several	other	
countries.”	But,	recall,	Krumhansl	(1978,	p.454)	made	the	exact	opposite	assumption,	“If	prominent	countries	…	
are	those	stimuli	having	relatively	many	features,	then	these	objects	have	features	in	common	with	a	larger	
number	of	different	objects….”.	In	other	words,	Krumhansl	(1978)	assumed	that	it	is	China,	not	Korea,	which	is	
similar	to	a	greater	number	of	other	countries.	
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by	coding	question	answers	with	±1.	Cervantes	et	al.	(in	press)	reported	violations	of	the	CHSH,	hence	
demonstrating	non-compositionality	in	concept	associations	of	this	kind.	Note,	the	conclusion	of	
supercorrelation	follows	by	considering	the	relation	between	different	pairs	of	A,	B	questions.		

A	challenging	issue	in	conceptual	reasoning	concerns	borderline	vagueness,	the	idea	that	for	
many	concepts	there	are	no	clearly	defined	boundaries	and	there	are	borderline	cases	for	which	it	is	
unclear	whether	the	predicate	applies.	The	Sorites	paradox	exemplifies	such	problems:	Start	by	stating	
that	if	X	is	a	heap	of	sand,	then	removing	one	grain	will	surely	result	in	a	heap.	However,	the	repeated	
application	of	this	rule	results	in	the	paradox	that	the	last	grain	left	must	still	count	as	a	heap.	The	
present	focus	is	on	the	acceptance	of	borderline	contradictions	along	the	lines	such	as	‘X	is	tall	and	not	
tall’,	where	X	refers	to	a	borderline	case	(Alxatib	and	Pelletier,	2011).	
	
5.4.2	Quantum	cognitive	models		
We	focus	on	Aerts’s	(2009;	see	also	Aerts	&	Gabora,	2005a,	2005b;	Aerts,	Sozzo,	&	Veloz,	2015)	model	
for	conceptual	application,	which	is	a	rare	cognitive	application	of	quantum	field	theory	and	Fock	
spaces.	A	Fock	space	is	a	superposition	of	different	Hilbert	spaces.	For	a	conceptual	combination	
between	concepts	A,	B,	Aerts	(2009)	proposed	a	part	based	on	the	tensor	product	between	the	
(quantum)	representations	for	A,	B	and	a	part	based	on	superposition,	so	that	the	resulting	state	would	

be	given	by	𝜓 𝐴,𝐵 = 𝑚𝑒!"|𝐴 ⨂|𝐵 + !!!"

!
(|𝐴 + |𝐵 ),	with	𝑚! + 𝑛! = 1.	The	Fock	space	structure	is	

essentially	𝑋⨂𝑌⊕ (𝑋 + 𝑌),	where	X,	Y	are	states.	Note,	this	combination	rule	is	intended	for	
conjunctions	and	the	one	for	disjunctions	follows	from	this	one.	The	model	purports	to	encompass	a	
part	corresponding	to	classical	conceptual	combination	(the	tensor	product	space)	and	a	non-classical	
part	(the	superposition).	Interference	effects	arise	from	the	superposition	part,	which	allow	the	
modelling	of	overextensions	and	underextensions.	This	model	purports	to	formalize	the	idea	of	two	
separate	routes	to	concept	combination,	a	classical	one	and	a	quantum	one.	

Regarding	non-compositionality	in	conceptual	combinations,	Bruza	et	al.’s	(2015)	application	of	
quantum	theory	more	broadly	relates	to	the	formalization	of	corresponding	tests	from	the	quantum	
literature	(Bell,	2004).	Bruza	et	al.	(2015)	provided	examples	of	non-compositional	quantum	
representations	for	conceptual	combinations.		
	 Cervantes	et	al.	(in	press)	generalized	the	CHSH	inequality	in	a	way	that	possible	influences	from	
signaling	can	be	discounted.	The	idea	is	that	exceeding	the	CHSH	bound	can	arise	from	signaling,	which	
is	the	extent	to	which	the	measurement	of	e.g.	A1	is	disturbed	by	the	measurement	of	B1	vs.	B2,	
quantified	as	the	difference	in	the	marginal	distribution	of	A1	in	each	of	the	two	measurements	
situations	(B1	vs.	B2).	When	these	marginal	distributions	are	the	same,	then	we	can	assume	that	the	
measurement	context	is	not	disturbing,	which	Cervantes	et	al.	(in	press)	call	the	no-signaling	or	marginal	
selectivity	situation.	Under	such	circumstances,	according	to	Cervantes	et	al.	(in	press)	we	have	a	purer	
test	of	contextuality,	to	mean	altering	the	meaning	of	the	relevant	concepts	(e.g.,	kind	vs.	evil),	
depending	on	context	(e.g.,	which	characters	are	being	evaluated;	Dzhafarov	et	al.,	2015,	2016;	Kujala	&	
Dzhafarov,	2013,	2014;	cf.	Wilde	&	Mizel,	2012).	The	expression	for	the	generalized	CHSH	inequality	is	 

𝑚𝑎𝑥!,!∈ !,! 𝐸 𝐴!
!𝐵!! − 2𝐸 𝐴!! 𝐵!!

!,!∈ !,!

− 𝐸 𝐴!! − 𝐸 𝐴!!

!∈ !,!

− 𝐸 𝐵!! − 𝐸 𝐵!!

!∈ !,!
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where	E	indicates	expectation.		
	 Blutner	et	al.	(2013)	developed	a	quantum	model	where	probabilities	corresponded	to	
activation	patterns	in	a	Hopfield	network	with	a	single	input	unit	representing	the	statement	of	interest	
(e.g.,	“John	is	tall”)	and	two	output	units	representing	truth,	falsity.	The	statement	could	be	
characterized	in	one	of	three	ways,	definite	truth,	definite	falsity,	and	truth	and	falsity	at	the	same	time	
–	this	last	pattern	expresses	a	‘glut’	and	is	a	feature	of	borderline	vagueness.	Probabilities	were	assigned	
to	each	of	these	three	possibilities	using	the	Boltzmann	distribution.	The	main	assumption	was	that	the	
projectors	for	truth	and	falsity	were	not	orthogonal,	allowing	emergence	of	interference	terms,	which	
affected	the	normalization	factors	for	the	Boltzmann	distribution	probabilities.			
	
5.4.3	Critical	evaluation	and	controversy		
Aerts	(2009)	reported	close	fits	to	overextension,	underextension	effects	in	conceptual	combination,	
covering	both	conjunctive	and	disjunctive	categories	(mostly	using	Hampton’s,	1988a,	1988b,	data),	
though	the	number	of	model	parameters	does	not	compare	favorably	to	data	degrees	of	freedom.	
Standard	conceptual	combination	approaches	have	difficulty	with	such	effects.	For	example,	Hampton	
(2011)	discussed	fuzzy	logic	averaging	approaches	to	overextensions,	underextensions,	and	negations	to	
conclude	that	they	fail	to	appropriately	capture	interactions	between	concepts	and,	instead,	an	
approach	based	on	prototypes	is	more	promising.	His	prototypes	approach	involves	various	heuristic	
assumptions	and	so	a	more	formalized	approach	(such	as	Aerts’s,	2009)	may	provide	a	tighter	
explanation.		

A	critical	point	is	that	the	forms	employed	for	conjunction	and	disjunction	and	the	postulated	
relation	between	category	membership	in	the	conjunctive	concept	and	in	the	disjunctive	concept	(the	
probability	of	membership	in	a	disjunctive	concept	is	one	minus	that	for	a	conjunctive	concept)	do	not	
cleanly	match	expectations	for	such	operations.	This	issue	also	arises	in	Aerts’s	(2009)	application	of	his	
conceptual	combination	model	to	the	disjunction	effect,	which	is	a	violation	of	the	sure	thing	principle	in	
decision	making	(Tversky	&	Shafir,	1992;	Section	5.8).	The	two	concepts	were	equated	with	the	various	
conditions	required	for	testing	the	sure	things	principle.	This	creates	a	confusing	picture,	since	in	a	
conceptual	combination	we	have	𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐴&𝐵 = 𝑓 𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐴 ,𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐵 .	
However,	for	the	disjunction	effect	we	require		
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑐𝑡𝑖𝑜𝑛&𝑘𝑛𝑜𝑤𝑛 𝑋 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎𝑐𝑡𝑖𝑜𝑛&𝑘𝑛𝑜𝑤𝑛 𝑌).	Despite	
these	qualifications,	Aerts’s	(2009)	model	formalizes	a	dual	route	for	conceptual	combination	and	it	has	
further	value	as	one	of	the	pioneering	quantum	cognition	models	(in	Aerts	&	Gabora,	2005a,	2005b).		

Bruza	et	al.	(2015)	identified	some	conceptual	combinations	for	which	there	was	evidence	of	
non-compositionality,	regardless	of	the	origins	of	this	non-compositionality,	i.e.,	contextuality	vs.	
disturbing	measurements.	These	results	impact	on	approaches	to	conceptual	combination	requiring	
compositionality	(e.g.,	Fodor’s,	1994),	less	so	on	ones	for	which	a	compositional	constraint	is	less	
central,	e.g.,	proposals	based	on	emergent	properties	(Hampton,	1997).	Non-compositionality	and	
weaker	forms	of	compositionality	are	now	well	established	in	the	conceptual	combination	literature	
(Swinney	et	al.,	2007).	So,	the	contribution	of	Bruza	et	al.	(2015)	is	providing	a	formal	framework	for	
assessing	compositionality/	contextuality.	A	demonstration	of	contextuality,	however,	does	not	
necessitate	a	quantum	model.	Also,	one	can	envisage	a	model	with	an	entangled	state	(perhaps	
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analogous	to	that	in	Bruza	et	al.,	2015)	and	consider	the	intriguing	question	of	what	would	be	the	
generative	value	of	such	a	model.		

Cervantes	et	al.	(in	press;	Dzhafarov	et	al.,	2015)	argued	that	there	is	no	evidence	for	pure	
contextuality	in	any	psychological	demonstration	of	the	CHSH	inequality,	apart	from	Cervantes	et	al.	(in	
press).	They	were	the	first	to	demonstrate	that	contextuality	is	possible	in	behavior,	without	disturbing	
measurements/	judgments,	with	the	help	of	their	technically	sophisticated	elaboration	of	the	CHSH	
inequality.		
	 Blutner	at	al.	(2013)	showed	that	Alxatib	and	Pelletier’s	(2011)	experimental	data	could	be	fit	by	
their	quantum	model,	but	not	a	closely	matched	classical	one	(for	which	probability	assignment	was	
identical	to	the	quantum	one,	with	the	exception	of	the	normalization	factor	for	which	interference	
terms	arose	in	the	quantum	case).	So,	this	is	another	example	of	how	interference	terms	in	quantum	
probabilities	are	employed	to	accommodate	effectively	a	violation	of	the	law	of	total	probability.		
	
5.5	Causal	inference		
	
5.5.1	Empirical	research		
This	section	concerns	the	way	knowledge	of	the	causal	structure	linking	causes	and	effects	for	a	
particular	situation,	and	some	related	information,	affects	inference.	Trueblood	at	al.	(2017)	presented	
three	experiments,	broadly	based	on	the	causal	structures	and	procedures	from	Rehder	(2014),	seeking	
to	challenge	classical	intuition	in	causal	inference.	They	reported	three	novel	empirical	findings.	First,	
they	observed	evidence	for	reciprocity,	that	is,	𝑃𝑟𝑜𝑏 𝐴 𝐵 = 𝑃𝑟𝑜𝑏(𝐵|𝐴),	which	is	surprising	because	of	
the	asymmetry	between	causes	and	effects	(reciprocity	shows	insensitivity	in	causal	direction).	The	
inverse	fallacy	(Kahneman	&	Tversky,	1972)	is	related	to	reciprocity,	but	there	have	not	been	
demonstrations	in	causal	inference.	Second,	there	was	evidence	for	memorylessness,	which	occurs	
when	conditionalization	in	probability	estimation	depends	only	on	the	latest	information	to	be	
considered.	For	example,	in	some	cases	conditionalization	on	A	&	then	B	would	appear	equivalent	to	
just	B.	Finally,	they	observed	evidence	that	classical	inconsistencies	were	more	likely	to	be	adopted	in	
unfamiliar	situations	and	for	participants	who	approached	the	task	in	a	more	intuitive	way	(as	opposed	
to	deliberative,	measured	using	the	Cognitive	Reflection	Test;	Frederick,	2005).	Together	with	these	
novel	empirical	findings,	Trueblood	et	al.	(2017)	also	reported	violations	of	the	Markov	condition,	anti-
discounting	behavior,	and	order	effects,	partly	replicating	Rehder	(2014).		
	
5.5.2	Quantum	cognitive	models		
The	evidence	for	inconsistencies	with	classical	probability	principles	in	causal	inference	motivates	the	
application	of	quantum	theory.	Equally,	there	is	evidence	for	some	classical	behavior	in	causal	inference	
(Rehder,	2014).	Accordingly,	Trueblood	et	al.	(2017)	specified	a	hierarchy	of	representations,	from	fully	
quantum	to	fully	classical,	which	included	intermediate	levels	with	some	effects/	causes	represented	in	
compatible	ways	and	some	in	incompatible	ways.	The	fully	classical	representation	required	an	eight	
dimensional	space,	since	all	causal	reasoning	scenarios	involved	three	binary	variables,	while	the	fully	
quantum	representation	required	only	a	two	dimensional	space	(cf.	Trueblood	&	Busemeyer,	2012).	The	
advantage	of	the	hierarchical	approach	was	that	quantum	and	classical	putative	influences	could	be	
integrated	in	the	same	framework	in	a	coherent	manner.	Regarding	the	quantum	part	of	the	model,	
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different	causes,	effects	were	represented	as	rays	and	rotation	matrices	were	fitted	to	the	data	to	
achieve	empirical	fits.	Probabilities	were	computed	by	projectors	in	nearly	all	cases,	except	for	the	fully	
quantum	one,	for	which	a	version	with	positive-valued	operator	measures	(POVMs)	outperformed	a	
version	with	projectors.	A	POVM	projects	to	a	subspace,	but	whereas	using	a	projector	is	noiseless,	
POVM	projection	is	associated	with	a	small	error	that	projection	will	go	to	another	subspace.	That	is,	
POVMs	incorporate	the	idea	that	there	may	be	other	possibilities	either	causing,	or	be	caused	by,	a	
particular	event.	In	Trueblood	et	al.’s	(2017)	modelling,	POVMs	allowed	the	circumvention	of	reciprocity	
(which	was	not	observed	consistently).		
	
5.5.3	Critical	evaluation	and	controversy		
Trueblood	et	al.	(2017)	employed	model	comparison	techniques	penalizing	for	number	of	parameters	
and	so	determined	the	most	appropriate	level	of	quantumness	for	describing	the	data,	for	each	
experiment.	In	all	cases,	a	degree	of	quantumness	was	required	for	best	fit.	Prior	to	Trueblood	et	a.’s	
(2017)	work,	it	had	already	been	recognized	that	causal	inference	can	violate	classical	principles,	which	
undermined	the	then	predominant	descriptive	and	normative	framework	for	causal	reasoning	based	
Bayesian	networks	(Pearl,	1988).	Rehder’s	(2014)	results	provided	strong	evidence	that,	at	least	in	some	
cases,	there	is	a	discrepancy	between	predictions	from	Bayes	nets	and	human	behavior	(see	also	
Fernbach	&	Sloman,	2009;	Park	&	Sloman,	2013;	Rottman	&	Hastie,	2016).	Rehder’s	(2014)	approach	for	
the	range	of	behaviors	in	causal	inference,	including	both	classical	and	non-classical	biases,	was	to	
specify	three	heuristic	models,	which	together	with	a	Bayesian	one	could	additively	combine	to	predict	
participant	behavior.	Trueblood	et	al.	(2017)	argued	that	their	main	contribution	was	to	show	how	
individual	heuristic	principles	were	not	needed,	but	rather	non-classical	behavior	in	causal	inference	
could	be	explained	by	employing	incompatibility/	interference	effects	from	quantum	theory	(see	also	
Mistry	et	al.	in	press).	Note,	even	if	there	is	no	technical	need	for	separate	heuristics,	heuristics	
potentially	provide	descriptive	interpretations	for	subsets	of	the	relevant	behavior	under	quantum	
theory	(Mistry	et	al.,	in	press).	Also,	Trueblood	et	al.	(2017)	showed	that	more	compatible	
representations	were	more	likely	to	be	observed	for	participants	adopting	a	more	analytic	mode	of	
reasoning	(Frederick,	2005)	and	after	more	experience	with	the	task,	so	supporting	their	view	for	the	
source	of	incompatibility	in	cognition.		
	
5.6	Constructive	influences	in	judgment	
	
5.6.1	Empirical	research		
Sometimes	an	opinion	or	judgment	appears	to	alter	the	underlying	mental	state	(Brehm,	1956;	
Lichtenstein	&	Slovic,	2006;	Schwarz,	2007;	Sharot	et	al.,	2010).	For	example,	an	earlier	judgment	can	
activate	thoughts	or	perspectives	that	alter	perception	of	subsequent	ones.	Or	it	is	possible	that	a	choice	
biases	a	re-interpretation	of	preferences	to	avoid	cognitive	dissonance	(Festinger,	1957).	For	example,	
Glöckner	et	al.	(2010)	demonstrated	coherence	shifts,	changes	in	subjective	cue	validities	related	to	a	
decision,	in	a	direction	indicating	greater	consistency	with	the	decision.	Likewise,	in	a	hypothetical	legal	
case,	Holyoak	and	Simon	(1999;	Simon	et	al.,	2001)	showed	that	the	evaluation	of	arguments	changed	to	
become	more	consistent	with	the	produced	verdict.	There	have	been	some	studies	attempting	to	
harness	such	intuitions	into	paradigms	suitable	for	applications	of	quantum	theory.	
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White	et	al.	(2014,	2015)	provided	the	most	direct	demonstration	of	constructive	influences	in	
judgment,	as	predicted	by	a	quantum	framework.	They	employed	a	paradigm	of	presenting	two	stimuli	
of	opposite	positive,	negative	valence	(e.g.,	corresponding	to	imagined	smartphone	ads).	The	pairs	of	
stimuli	were	always	presented	in	the	same	order.	In	all	cases	participants	provided	an	affective	rating	for	
the	second	stimulus.	In	some	cases,	participants	provided	an	affective	rating	for	the	first	one	as	well.	
White	et	al.	(2014,	2015)	observed	what	they	called	an	evaluation	bias,	according	to	which	the	second	
stimulus	was	rated	in	a	more	extreme	way	when	the	first	stimulus	had	been	rated	too,	than	when	it	had	
not.	Put	differently,	the	intermediate	judgment	created	an	impression	of	greater	contrast	between	the	
first	and	second	stimuli.	White	et	al.	(2014,	2015)	presented	several	modifications	to	their	procedure	
and	controls,	and	generalized	the	finding	with	other	kinds	of	judgments	(e.g.,	trustworthiness).		

Kvam	et	al.	(2014)	examined	constructive	influences	in	a	prisoner’s	dilemma	task	(Shafir	&	
Tversky,	1992).	In	such	a	task,	participants	have	to	decide	whether	to	defect	or	cooperate	with	a	(usually	
hypothetical)	associate,	and	then	a	payoff	is	assigned	to	different	combinations	of	actions	(Section	
5.8.1).	The	payoffs	usually	encourage	defection,	on	an	assumption	of	associate	cooperation.	Kvam	et	al.	
(2014)	employed	a	sequential	prisoner’s	dilemma	task	with	the	added	manipulation	that	in-between	the	
two	tasks	participants	were	asked	to	state	whether	they	were	intending	to	cooperate.	They	found	that	a	
statement	of	cooperation	impacted	behavior	on	the	second	prisoner’s	dilemma	task.		

The	idea	that	decisions	can	force	the	identification	of	the	mental	state	with	the	decision	
outcome	was	explored	by	Yearsley	and	Pothos	(2016).	They	employed	a	hypothetical	murder	mystery,	
such	that	the	suspect	would	be	originally	considered	innocent.	All	participants	would	then	receive	12	
pieces	of	evidence	indicating	the	suspect	to	be	guilty,	such	that	each	piece	of	evidence	was	individually	
weak	but	collectively	they	would	make	a	strong	case	of	guilt.	With	a	between	participants	manipulation,	
Yearsley	and	Pothos	(2016)	varied	the	number	of	intermediate	judgments	of	guilt	for	the	suspect.	They	
found	that	increasing	the	number	of	intermediate	judgments	slowed	down	opinion	change.	Note,	this	is	
the	quantum	Zeno	prediction	in	physical	systems,	as	translated	to	opinion	change.		

In	Kvam	et	al.	(2015)	participants	were	asked	to	judge	the	direction	of	motion	in	a	dynamic	dot	
display	(for	the	subset	of	dots	which	were	moving	coherently)	and	provide	confidence	ratings	too.	The	
main	empirical	finding	was	that	confidence	ratings	were	less	extreme	when	participants	made	an	
intermediate	choice	prior	to	rating	confidence,	than	when	they	did	not,	as	long	as	there	was	some	time	
delay	between	the	judgment	and	confidence	ratings.		
	
5.6.2	Quantum	cognitive	models		
White	et	al.’s	(2014,	2015)	quantum	model	for	the	evaluation	bias	assumed	a	basis	for	positive,	negative	
affect	and	an	initial	state	close	to	one	of	these	rays,	depending	on	the	valence	of	the	first	stimulus	(e.g.,	
if	the	first	stimulus	was	positive,	the	mental	state	was	close	to	the	positive	affect	ray).	The	subsequent	
oppositely	valenced	stimulus	was	modeled	with	an	appropriate	rotation	(e.g.,	if	the	subsequent	stimulus	
was	negative,	the	rotation	was	towards	the	negative	ray).	The	impact	of	the	intermediate	rating	was	a	
projection	of	the	mental	state	to	the	corresponding	subspace,	which	meant	that	the	subsequent	
rotation	would	bring	the	mental	state	closer	to	the	oppositely	valenced	ray.	Therefore,	the	collapse	
assumption	in	quantum	theory	drives	prediction.		

Analogously,	Kvam	et	al.	(2014)	employed	a	quantum	model	for	behavior	in	the	prisoner’s	
dilemma	task,	for	how	internal	states	of	intention	to	cooperate	or	not	relate	to	action,	and	so	associated	
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an	intermediate	statement	of	cooperativeness	to	performance	in	the	second	PD	task.	The	intermediate	
statement	of	cooperation	between	the	two	tasks	collapses	the	mental	state.		
	 Yearsley	and	Pothos	(2016)	employed	a	two-dimensional	space,	with	a	basis	set	corresponding	
to	the	guilt,	innocence	of	the	suspect.	The	effect	of	each	piece	of	evidence	on	the	mental	state	was	
modeled	by	a	time-dependent	unitary	operator,	so	that	the	impact	of	particular	pieces	of	evidence	on	
opinion	change	depended	on	their	serial	position	(Hogarth	&	Einhorn,	1992).	Intermediate	judgments	on	
the	mental	state	were	modeled	through	POVMs,	since	with	several	judgments	(in	some	conditions)	
there	might	be	large	potential	error	in	any	single	judgment.	Yearsley	and	Pothos	(2016)	computed	an	
analytic	expression	for	the	survival	probability	(probability	of	no-change)	as	a	function	of	intermediate	
judgments.	The	main	feature	of	their	quantum	model	is	the	collapse	postulate.		
	 Kvam	et	al.	(2015)	employed	a	quantum	random	walk	model,	involving	a	tridiagonal	
Hamiltonian,	from	the	Feynman	crystal	model	(Feynman	&	Hibbs,	1965).	Off	diagonal	entries	diffuse	
amplitude	to	adjacent	states,	which	correspond	to	all	possible	confidence	levels.	The	parameterization	
of	the	Hamiltonian	was	consistent	with	that	of	the	intensity	matrix	for	a	matched	classical	Markov	
random	walk	model	(Pike,	1966).	Without	an	intermediate	choice,	amplitude	was	pushed	towards	
extreme	confidence	levels.	With	an	intermediate	choice	and	subsequent	processing	of	the	stimuli	
(second	stage	processing),	the	flow	of	amplitude	towards	extreme	confidence	levels	was	less	
pronounced,	as	empirically	observed.	Interference	arises	in	the	model	because	the	second	stage	
processing	makes	the	initially	commuting	projectors	for	judgment	and	confidence	ratings	
noncommuting.			
	
5.6.3	Critical	evaluation	and	controversy		
White	et	al.	(2014,	2015)	aimed	to	show	how	the	projection	associated	with	the	intermediate	judgment	
could	account	for	a	change	in	second	stimulus	evaluation,	as	predicted	by	quantum	theory.	No	specific	
fits	were	carried	out,	but	the	finding	of	the	evaluation	bias	was	considered	to	confirm	the	quantum	
prediction,	based	on	certain	assumptions	(e.g.,	the	relative	placement	of	rays,	which	White	et	al.,	2014,	
justified	with	consistency	arguments).	White	et	al.	(2014)	reported	that	the	evaluation	bias	was	an	a	
priori	prediction	of	quantum	theory.	They	examined	Hogarth	and	Einhorn’s	(1992)	anchoring	and	
adjustment	model,	as	an	eventual	judgment	from	multiple	pieces	of	evidence	can	be	influenced	by	
intermediate	judgments.	However,	White	et	al.	(2014)	showed	that	reasonable	parameterizations	of	
Hogarth	and	Einhorn’s	(1992)	model	do	not	allow	the	evaluation	bias.	Memory	or	attention	processes	
could	also	potentially	account	for	the	evaluation	bias.	For	example,	the	intermediate	judgment	
potentially	creates	a	stronger	memory	trace	for	the	first	stimulus,	which	then	creates	a	stronger	contrast	
with	the	second	stimulus.	White	et	al.	(2014,	2015)	argued	that	such	potential	explanations	for	the	
evaluation	bias	are	complementary	to	the	formal	description	from	quantum	theory.		
	 Kvam	et	al.’s	(2014)	quantum	model	fitted	their	prisoner’s	dilemma	data	better	than	a	matched	
classical	model,	which	lacked	a	constructive	influence	from	the	intermediate	judgment.	Note,	whether	a	
quantum	model	can	predict	a	contrast	effect	(as	in	White	et	al.,	2014,	2015)	or	not	(cf.	Kvam	et	al.,	
2014)	depends	on	the	specific	model	assumptions	(subspaces,	initial	state	etc.);	quantum	theory	can	
accommodate	both	possibilities.	
	 Yearsley	and	Pothos	(2016)	compared	the	quantum	model	with	a	matched	classical	probability	
model,	which	also	incorporated	error-prone	decisions;	the	two	models	primarily	differed	in	that	the	



26	 	 Quantum	cognition	
	

quantum	model	allows	for	constructive	judgments.	Because	the	empirical	findings	showed	an	impact	
from	the	number	of	intermediate	judgments,	the	proposed	classical	model	performed	poorly.	
	 Kvam	et	al.	(2015)	compared	a	classical	random	walk	drift	diffusion	model	and	a	corresponding	
quantum	version.	Drift	diffusion	models	provide	the	predominant	approach	to	evidence	accumulation	
(Ratcliff	&	Smith,	2004)	and,	as	classical	models,	assume	knowledge	of	the	relative	evidence	for	the	
available	hypotheses	at	each	time	point	exists	(i.e.,	any	uncertainty	is	epistemic).	In	such	models,	there	
is	no	default	mechanism	for	how	an	intermediate	judgment	affects	performance.	Kvam	et	al.	(2015)	
noted	that	both	the	classical	and	the	quantum	models	can	be	informed	by	intermediate	choices.	
However,	in	the	former	case,	the	choice	does	not	change	the	evidence/	state,	only	the	information	that	
may	be	available	to	the	decision	maker.	A	Bayesian	model	comparison	favored	the	quantum	model.	A	
technical	issue	is	that	the	initial	states	for	the	quantum	and	classical	models	were	not	matched.	If	both	
models	involved	an	initial	Gaussian	state,	then	both	classical	and	quantum	evolution	would	result	in	a	
state	conforming	to	a	Gaussian	distribution.	Then,	any	final	state	difference	could	be	attributed	to	the	
measurement.	Also,	one	could	question	how	applicable	the	Markov	random	walk	model	was	in	this	
case,	since	accumulator	type	models	are	more	typical	in	perceptual	decision	making	tasks,	unlike	Kvam	
et	al.’s	(2015)	approach.	For	example,	Markov	random	walk	models	have	no	mechanism	for	arriving	at	a	
decision	without	an	external	prompt,	but	stimulus	presentation	in	Kvam	et	al.’s	(2015)	paradigm	was	
sometimes	very	long,	suggesting	that	stopping	behavior	would	be	internally	driven.		
	
5.7	Decision	order	effects		
	
5.7.1	Empirical	research		
There	is	abundant	evidence	for	order	effects	in	decision	making.	For	example,	in	a	well-known	
investigation	based	on	Gallup	polls,	the	probability	to	answer	yes	to	a	question	about	whether	Clinton	is	
trustworthy	depended	on	whether	an	analogous	question	about	Gore	preceded	or	followed	the	Clinton	
one	(Moore,	2002).	There	are	similar	results	in	medical	diagnosis,	whereby	the	assessment	for	the	
probability	of	a	disease	depended	on	the	order	of	conditionalizing	evidence,	even	for	medical	trainees	
(Bergus	et	al.,	1998),	and	in	a	jury	decision	task	(McKenzie,	Lee,	&	Chen,	2002;	Trueblood	&	Busemeyer,	
2011).	A	related	finding	concerns	differences	in	the	evaluation	of	public	service	announcements,	
whether	from	the	perspective	of	the	self	vs.	the	perspective	of	another	observer	(Wang	&	Busemeyer,	
2015).	Question	order	effects	can	be	identified	as	primacy	vs.	recency	effects	or	contrast	vs.	assimilation	
effects,	referring	to	the	various	ways	questions	or	pieces	of	evidence	interact/	combine	(Hogarth	&	
Einhorn,	1992;	Payne	et	al.,	1993;	Wang	&	Busemeyer,	2013).		
	 Is	it	possible	to	establish	a	relation	between	the	pattern	for	yes	and	no	responses,	for	two	binary	
questions,	presented	in	all	possible	orders?	Abbreviating	𝐴 = 𝑦𝑒𝑠 	to	𝐴!"#	etc.,	consider	the	following	
quantity:	
𝑃𝑟𝑜𝑏 𝐴!"#,𝐵!"# + 𝑃𝑟𝑜𝑏 𝐴!" ,𝐵!" − 𝑃𝑟𝑜𝑏 𝐵!"#,𝐴!"# + 𝑃𝑟𝑜𝑏 𝐵!" ,𝐴!" = 𝑃𝑟𝑜𝑏 𝐴!"#,𝐵!" +
𝑃𝑟𝑜𝑏 𝐴!" ,𝐵!"# − 𝑃𝑟𝑜𝑏 𝐵!"#,𝐴!" + 𝑃𝑟𝑜𝑏 𝐵!" ,𝐴!"# .	Wang	et	al.	(2014;	Wang	&	Busemeyer,	
2013;	Yearsley	&	Busemeyer,	2016)	proposed	that	this	quantity	is	zero	and	called	the	resulting	equality	
the	quantum	question	(QQ)	equality.	Wang	et	al.	(2014;	Wang	&	Busemeyer,	2013)	examined	the	QQ	
equality	across	70	surveys,	with	participants	varying	between	651	and	3,006,	and	reported	consistency	
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with	the	QQ	equality	in	nearly	all	cases.	Yearsley	and	Trueblood	(2018)	considered	a	variant	based	on	
conditional	probabilities,	𝑃𝑟𝑜𝑏 𝑁 𝐵,𝐴 − 𝑃𝑟𝑜𝑏 𝑁 𝐴,𝐵 = 𝑃𝑟𝑜𝑏 𝑁 𝐴,𝐵 − 𝑃𝑟𝑜𝑏 𝑁 𝐵,𝐴 = 0,	and	
provided	supporting	empirical	evidence.		
	 Yearsley	and	Trueblood	(2018)	provided	a	novel	test	of	the	co-occurrence	between	order	effects	
and	conjunction	fallacies.	The	authors	collected	judgments	regarding	five	main	candidates	for	the	
Republican	and	Democratic	2016	presidential	nominations,	concerning	the	probability	of	each	candidate	
winning	various	primaries	and	the	eventual	nomination.	Order	effects	in	the	conditionalizing	
information	were	observed	(𝑃𝑟𝑜𝑏 𝑁 𝐵,𝐴 ≠ 𝑃𝑟𝑜𝑏 𝑁 𝐴,𝐵 )	and	conjunction	fallacies	(𝑃𝑟𝑜𝑏 𝐴 ∧  𝐵 >
min {𝑃𝑟𝑜𝑏 𝐴 ,𝑃𝑟𝑜𝑏 𝐵 }),	but	no	double	conjunction	fallacies.	Importantly,	both	effects	were	observed	
for	the	majority	of	participants.	Note,	as	for	Trueblood	et	al.	(2017),	a	more	analytic	style	of	thinking	was	
more	likely	to	be	associated	with	compatible	representations.		
	 Finally,	the	idea	that	previous	questions	can	provide	a	unique	context	or	perspective	for	
subsequent	ones	(e.g.,	Schwarz,	2007)	was	considered	using	the	so-called	ABA	paradigm	(Khrennikov,	
Basieva,	Dzhafarov,	&	Busemeyer,	2014).	Suppose	that	order	effects	are	identified	for	questions	A,	B	in	
an	initial	experiment.	Then	in	another	experiment,	question	A	is	presented,	followed	by	B,	followed	by	A	
again.	Khrennikov	et	al.	(2014)	suggested	that	naïve	observers	would	aim	to	be	consistent	across	the	
copies	of	A,	regardless	of	the	presence	of	B	in	between	or	the	relation	between	the	A,	B	questions.	
Busemeyer	and	Wang	(2017)	conducted	an	ABA	experiment	with	325	participants	on	sets	of	questions	
for	which	order	effects	had	been	previously	identified	and	reported	a	moderate	amount	of	opinion	
change	between	the	first	and	second	iteration	of	the	A	question.		
	
5.7.2	Quantum	cognitive	models		
Regarding	question	order	effects,	Trueblood	and	Busemeyer’s	(2011)	approach	encompassed	Bergus	et	
al.’s	(1998)	medical	diagnosis	task,	McKenzie	et	al.’s	(2002)	jury	decision	task	from,	and	new	
experiments.	They	specified	a	mental	state	for	the	possible	combinations	between	the	presence,	
absence	of	e.g.	a	disease	and	positive	or	negative	evidence,	in	a	composite	(direct	sum)	space,	such	that	
one	subspace	corresponded	to	the	disease	being	present	and	the	other	absent.	The	initial	story	and	
subsequent	pieces	of	evidence	were	modeled	with	different	rotations	of	this	mental	state.	The	
specification	of	the	Hamiltonians	was	broadly	analogous	to	that	of	Pothos	and	Busemeyer	(2009)	for	the	
disjunction	effect	(Shafir	&	Tversky,	1992),	that	is,	there	was	a	part	that	just	operated	within	each	
subspace	and	a	part	that	mixed	amplitudes	across	the	two	subspaces	and	could	lead	to	violations	of	the	
law	of	the	total	probability.	Failures	of	commutativity	in	conditionalizing	conjunctions	(e.g.,	
𝑃𝑟𝑜𝑏(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒1 & 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒2))	in	their	model	arose	because	Hamiltonians	did	not	commute	
with	the	projectors	for	intermediate	judgments	about	the	presence	of	the	disease	given	the	presented	
evidence	at	each	step.	
	 An	alternative	approach	to	question	order	effects	was	that	of	Wang	and	Busemeyer	(2015;	see	
also	Wang	&	Busemeyer,	2016a),	who	employed	a	quantum	random	walk	model	for	modelling	the	
effectiveness	of	public	health	service	announcements	from	the	perspective	of	the	self	and	then	another	
person	in	one	order	vs.	the	reverse	order.	The	model	was	analogous	to	Kvam	et	al.’s	(2015).	
	 The	QQ	equality	is	an	a	priori	prediction	of	quantum	theory	in	decision	making.	It	can	be	derived	
assuming	that	no	new	information	is	included	between	questions.	In	two	dimensions,	the	QQ	equality	
relates	to	the	way	the	positive	and	negative	answers	for	two	questions	(two	different	basis	sets	in	
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Hilbert	space)	are	linked	up	–	the	unitary	transform	that	takes	us	from	the	basis	set	for	one	question	to	
that	of	another	is	fixed	by	the	relation	between	any	one	answer	to	one	question	and	another	to	the	
other	question.	Yearsley	and	Trueblood’s	(2018)	QQ	equality	variant	requires	one-dimensional	
subspaces	and	reciprocity	(reciprocity	is	automatically	true	when	A,	B	are	represented	by	one-
dimensional	subspaces).	
	 Yearsley	and	Trueblood’s	(2018)	main	contribution	was	to	identify	incompatibility	as	the	driving	
factor	for	both	order	effects	and	conjunction	fallacies	and	so	predict	a	co-occurrence	for	these	effects.	
They	presented	a	simple	quantum	model	with	one-dimensional	subspaces	for	the	effects	of	interest	and	
extracted	constraints	on	the	size	of	the	effects.	
	 The	ABA	paradigm	was	proposed	as	a	test	of	how	incompatibility	can	moderate	our	expectation	
of	question	order	effects.	The	correlation	between	the	two	responses	of	A	should	reveal	identity	when	
A,	B	are	compatible,	but	it	would	be	otherwise	bounded	depending	on	the	uncertainty	relation	between	
A,	B	(Khrennikov	et	al.,	2014).	That	is,	if	a	response	to	question	A	is	followed	by	an	incompatible	
question	B,	then	the	answer	to	question	A	has	to	become	uncertain	again	and	the	correlation	between	
the	two	A	copies	should	be	less	than	1.	These	expectations	were	refined	with	Wang	and	Busemeyer’s	
(2016)	quantum	model	for	ratings,	which	showed	that	the	squared	correlation	between	the	first	and	
second	A	measurements	should	be	positively	related	to	the	squared	correlation	between	the	A,	B	
measurements.	
	
5.7.3	Critical	evaluation	and	controversy		
Trueblood	and	Busemeyer	(2011)	reported	excellent	fits	of	the	quantum	model	with	experimental	
results.	It	is	appealing	that	the	same	quantum	formalism	was	employed	for	both	order	effects	and	the	
disjunction	effect	(cf.	Pothos	&	Busemeyer,	2009).		

Question	order	effects	are	classically	puzzling,	because	of	commutativity	in	conjunction.	
Suppose	A,	B	represent	the	answer	yes	to	corresponding	questions.	Then,	the	event	answering	yes	to	
the	first	question	and	then	yes	to	the	second	one	is	given	by	𝑃𝑟𝑜𝑏 𝐴 𝑃𝑟𝑜𝑏 𝐵 𝐴 = 𝑃𝑟𝑜𝑏 𝐴&𝐵 =
𝑃𝑟𝑜𝑏 𝐵 𝑃𝑟𝑜𝑏(𝐴|𝐵)	and	so	accommodating	order	effects	can	only	be	done	by	conditionalizing	on	e.g.	
order.	As	was	the	case	for	constructive	influences	in	judgment,	there	are	several	baseline	intuitions	for	
how	earlier	judgments	could	affect	later	ones,	e.g.,	earlier	questions	may	create	a	unique	context	for	
later	ones	(Schwarz,	2007).	Hogarth	and	Einhorn’s	(1992)	anchoring	and	adjustment	model	can	describe	
order	effects,	but	McKenzie	et	al.	(2002)	argued	that	across	reasonable	parameterizations	the	model	
could	not	reproduce	their	results.	McKenzie	et	al.	(2002)	proposed	a	variant	called	the	minimum	
acceptable	strength	model.	In	the	standard	anchoring	and	adjustment	model	evidence	for	a	hypothesis	
depends	on	the	most	recent	evidence	and	the	accumulated	weight	for	the	hypothesis.	The	impact	of	the	
most	recent	piece	of	evidence	depends	on	a	fixed	reference	point.	McKenzie	et	al.’s	(2002)	extension	
involved	a	variable	reference	point,	achieving	better	description,	but	at	the	expense	of	more	
parameters.	Trueblood	and	Busemeyer	(2011)	compared	this	minimum	acceptable	strength	model	with	
the	quantum	model	and	still	concluded	in	favor	of	the	latter.		
	 Wang	and	Busemeyer	(2015)	compared	their	quantum	model	with	a	closely	matched	Markov	
random	walk	model	and	reported	superior	fits	for	the	quantum	model	for	their	empirical	results.	This	
was	largely	because	in	the	quantum	model	the	two	questions	were	represented	as	incompatible,	so	that	
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in	consecutive	judgments	order/	interference	effects	can	emerge;	this	was	not	possible	in	the	Markov	
random	walk	model.		
	 Overall,	we	see	two	quantum	approaches	(Trueblood	&	Busemeyer,	2011;	Wang	&	Busemeyer,	
2015)	for	question	order	effects,	both	based	on	dynamical	evolution	of	a	mental	state,	but	involving	
different	specification.	Arguably,	this	can	be	justified	through	a	focus	on	comparisons	with	particular	
non-quantum	models.	Note,	violations	of	commutativity	in	quantum	conjunctions	can	also	be	captured	
with	non-dynamical	approaches.			
	 The	QQ	equality	is	considered	one	of	the	most	impressive	predictions	from	the	quantum	
cognition	research	programme,	because	it	is	a	parameter	free,	stringent	a	priori	constraint.	Kellen	et	al.	
(in	press)	presented	a	class	of	models	allowing	varying	formats	and	degree	for	the	dependence	of	later	
questions	onto	earlier	ones.	They	identified	versions	which	either	produced	the	QQ	equality	exactly	or	
showed	the	QQ	equality	as	a	likely	prediction,	thus	contesting	the	necessity	for	the	quantum	formalism	
to	account	for	the	QQ	equality.	An	advantage	of	Kellen	et	al.’s	(in	press)	approach	is	that	it	enables	a	
deeper	process	understanding	of	the	relevant	psychological	mechanism,	in	that	their	various	models	are	
specified	more	directly	in	terms	of	psychological	processes.	By	contrast,	formal	probabilistic	models	
(including	quantum	ones)	require	further	interpretational	steps	before	process	parts	can	be	recast	in	
traditional	psychological	terms.	An	advantage	of	the	quantum	approach	is	that	the	QQ	equality	can	be	
predicted	a	priori,	as	well	as	the	conditions	under	which	non-conformity	is	expected.	Overall,	it	is	
unsurprising	that	heuristic	principles	can	be	employed	to	reproduce	the	QQ	equality.	But,	we	would	
argue	that	an	explanation	based	on	heuristics	and	one	on	formal	probability	principles	serve	different	
purposes.	Note,	it	is	unclear	whether	Kellen	et	al.’s	(in	press)	analysis	can	reproduce	the	QQ	equality	
variant	that	Yearsley	and	Trueblood	(2018)	reported.		
	 Yearsley	and	Trueblood	(2018)	reported	the	predicted	co-occurrence	of	order	effects	with	
conjunction	fallacies	and	consistency	between	empirical	results	and	the	size	of	these	effects.	They	also	
observed	a	dependence	of	style	of	thinking	(analytic	vs.	reflexive)	and	political	identity	on	the	likelihood	
of	incompatible	representations.	Yearsley	and	Trueblood	(2018)	examined	whether	Hogarth	and	
Einhorn’s	(1992)	anchoring	and	adjustment	model	can	reproduce	their	QQ	equality	variant,	but	this	was	
not	possible	without	implausible	assumptions.	They	also	considered	Costello	and	Watts’s	(2014)	
probability	theory	plus	noise	model	for	the	conjunction	fallacy,	but	they	derived	a	constraint	from	this	
theory	not	satisfied	by	their	data.	They	noted	that	there	are	no	existing	non-quantum	models	which	
require	a	co-occurrence	of	order	effects	and	conjunction	fallacies	or	that	predict	a	dependency	of	such	
effects	on	cognitive	style	of	thinking.	
		 The	results	of	the	ABA	paradigm	showed	the	squared	correlation	between	the	first	and	second	A	
measurements	to	positively	relate	to	the	squared	correlation	between	the	AB	measurements,	as	
predicted	by	the	quantum	model	(Busemeyer	and	Wang,	2017).	Even	though	there	is	non-quantum	
psychological	theory	for	how	previous	questions	can	alter	the	context	for	subsequent	ones	(e.g.,	
Schwarz,	2007),	the	dependence	of	this	effect	on	the	compatibility	of	A,	B,	as	well	as	the	precise	
quantitative	predictions,	are	beyond	any	such	baseline	intuitions.	Classical	test	theory	(e.g.,	Lord	&	
Novick,	2013)	also	postulates	variability	in	measurements	across	occasions.	According	to	this	view,	the	
measurement	result	from	e.g.	a	question	rating	represents	both	a	true	opinion	that	is	fixed	across	
repeated	measurements	plus	some	measurement	error	that	randomly	varies	across	repeated	
measurements.	However,	the	measurement	error	model	differs	from	the	quantum	approach	in	a	
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fundamental	manner.	When	considering	an	AA	sequence	(i.e.,	responding	to	A	twice	without	B	in	
between),	the	projection	principle	of	quantum	probability	predicts	perfect	correlation	between	the	first	
and	second	measurements	of	A,	whereas	classical	test	theory	allows	measurement	error	to	occur	across	
repetitions;	empirical	results	support	the	quantum	view	(Busemeyer	&	Wang,	2017)3.	Classical	test	
theory	also	cannot	predict	the	role	of	compatibility	in	whether	there	is	identity	between	the	two	
iterations	of	A	in	an	ABA	sequence.	
	
5.8	Conjunction/	disjunction	fallacies	in	decision	making	
	
5.8.1	Empirical	research		
There	are	a	range	of	related	results,	including	conjunction	fallacies	(Tversky	&	Kahneman,	1983;	Moro,	
2009),	disjunction	fallacies	(Bar-Hillel	&	Neter,	1993;	Carlson	&	Yates,	1989;	Fisk,	2002),	unpacking	
effects	(Rottenstreich	&	Tversky,	1997;	Sloman,	Rottenstreich,	Wisniewski,	Hadjichristidis,	&	Fox,	2004),	
and	more	complex	conjunctions	(e.g.,	Winman,	Nilsson,	Juslin,	&	Hansson,	2010).	Using	the	terminology	
from	Tversky	and	Kahneman’s	(1983)	paradigmatic	Linda	example,	where	BT=bank	teller,	F=feminist,	the	
conjunction	fallacy	is	𝑃𝑟𝑜𝑏 𝐹 ∧  𝐵𝑇 > 𝑃𝑟𝑜𝑏(𝐵𝑇).	The	disjunction	fallacy	is	𝑃𝑟𝑜𝑏 𝐹 ∨  𝐵𝑇 < 𝑃𝑟𝑜𝑏(𝐹)	
(note,	this	is	not	to	be	confused	with	the	disjunction	effect,	see	shortly;	Shafir	&	Tversky,	1992).	
Conjunction	effects	often	arise	when	combining	an	unlikely	conjunct	with	a	likely	one	and/or	when	the	
conjuncts	have	a	strong	causal	association.	Unpacking	effects	are	violations	of	the	law	of	total	
probability	e.g.	instances	of	subadditivity,	whereby	𝑃𝑟𝑜𝑏 𝐴 < 𝑃𝑟𝑜𝑏 𝐴 ∧  𝐵 + 𝑃𝑟𝑜𝑏(𝐴 ∧ ~𝐵).		
	 Gronchi	and	Strambini	(2017)	presented	a	variant	of	the	Linda	problem	to	test	the	Wigner–
d’Espagnat	inequality,	𝑃𝑟𝑜𝑏 𝐴 ∩ 𝐶 ≤ 𝑃𝑟𝑜𝑏 𝐴 ∩ 𝐵 ∪ 𝐵 ∩ 𝐶 	(d’Espagnat,	1979).	The	Wigner–
d’Espagnat	inequality	is	a	version	of	Bell’s	inequality	(Bell,	2004)	better	suited	to	Linda-style	paradigms	
and	a	Venn	diagram	illustrates	how	trivial	it	is	from	a	classical	perspective	(i.e.,	if	all	possibilities	are	
represented	in	the	same	sample	space).	Bell	notably	stated	“trivial	as	it	is,	the	inequality	is	not	respected	
by	quantum	mechanical	probabilities’’	(Bell,	1981,	p.	52).	Gronchi	and	Strambini	(2017)	reported	two	
experiments	concerning	the	probability	of	picking	different	objects	from	an	urn	or	of	male	vs.	female	
students	more	likely	to	be	playing	soccer.	In	the	first	experiment	the	results	indicated	violations	of	the	
Wigner-d’Espagnat	inequality.	In	a	second	experiment,	when	participants	directly	estimated	unpacked	
probabilities	(𝑃𝑟𝑜𝑏(𝐴 ∩ 𝐵)	and	𝑃𝑟𝑜𝑏(𝐵 ∩ 𝐶)	separately)	Wigner–d’Espagnat	violations	disappeared,	
thus	indicating	that	a	subadditivity	pattern	(𝑃𝑟𝑜𝑏 𝐴 ∩ 𝐵 ∪ 𝐵 ∩ 𝐶 ≤ 𝑃𝑟𝑜𝑏 𝐴 ∩ 𝐵 + 𝑃𝑟𝑜𝑏 𝐵 ∩ 𝐶 )	
possibly	accounts	for	Wigner-d’Espagnat	violations.		
	 The	disjunction	effect	is	an	influential	demonstration	of	a	violation	of	the	law	of	total	probability	
(Shafir	&	Tversky,	1992;	Tversky	&	Shafir,	1992).	In	one	variant,	participants	were	presented	with	a	
prisoner’s	dilemma	game,	such	that	the	payoffs	recommended	defection	on	the	assumption	that	the	
hypothetical	other	player	cooperates	(Section	5.6.1).	Participants	received	different	information	about	
the	intention	of	the	other	player:	that	he/she	would	cooperate,	defect,	or	no	information	would	be	
given.	In	each	of	the	‘known’	conditions,	most	participants	preferred	to	defect,	but		in	the	‘unknown’	
condition	many	reversed	their	judgment	to	cooperate,	revealing	a	pattern	of	

																																																													
3	Note	using	POVMs	instead	of	projectors	would	predict	non-identity	for	consecutive	judgments.	Currently	there	is	
a	challenge	in	understanding	the	circumstances	when	POVMs	vs.	projectors	are	more	suitable.		
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𝑃𝑟𝑜𝑏 𝑑𝑒𝑓𝑒𝑐𝑡; 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 < 𝑃𝑟𝑜𝑏 𝑑𝑒𝑓𝑒𝑐𝑡 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 ∙ 𝑃𝑟𝑜𝑏 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 + 𝑃𝑟𝑜𝑏 𝑑𝑒𝑓𝑒𝑐𝑡 𝑑𝑒𝑓𝑒𝑐𝑡 ∙
𝑃𝑟𝑜𝑏 𝑑𝑒𝑓𝑒𝑐𝑡 ,	where	the	conditionalizations	refer	to	the	provided	information	
(𝑃𝑟𝑜𝑏 𝑑𝑒𝑓𝑒𝑐𝑡; 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 	just	refers	to	the	marginal	when	there	is	no	information	about	the	other	
player’s	action).	The	marginal	in	the	unknown	condition	has	to	be	bounded	by	the	conditionals	in	each	
of	the	known	conditions,	so	that	the	results	indicated	a	violation	of	the	law	of	total	probability.	Other	
variants	were	proposed	(e.g.,	a	two	stage	gambling	task)	and	the	finding	has	been	widely	replicated.	
Also,	extensions	to	the	prisoner’s	dilemma	task	have	been	developed,	e.g.,	a	sequential	version	(Blanco	
et	al.,	2014)	or	one	to	study	prior	commitments	to	defect	or	cooperate	(Kvam	et	al.,	2014).		
	 Another	violation	of	the	law	of	total	probability	was	reported	in	Townsend	et	al.	(2000;	
Busemeyer	et	al.,	2009).	Participants	were	first	presented	with	a	face.	Some	participants	were	asked	to	
categorize	the	face	as	friendly	or	hostile,	while	other	participants	simply	observed	it.	In	a	second	step,	all	
participants	were	asked	to	indicate	an	action,	attack	or	withdraw.	Across	several	such	stimuli,	we	expect	
𝑃𝑟𝑜𝑏 𝑎𝑡𝑡𝑎𝑐𝑘 = 𝑃𝑟𝑜𝑏 𝑎𝑡𝑡𝑎𝑐𝑘 ∧ 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦 + 𝑃𝑟𝑜𝑏 𝑎𝑡𝑡𝑎𝑐𝑘 ∧ ~𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦 ,	but	this	was	not	observed.	
Wang	and	Busemeyer	(2016b)	replicated	this	categorization-decision	effect.		
		
5.8.2	Quantum	cognitive	models		
Busemeyer	et	al.	(2011)	employed	a	static	model	in	which	a	conjunction	fallacy	emerges,	mostly	on	the	
basis	of	suitable	representation	assumptions.	Specifically,	|𝑃!"|𝜓 |! = |𝑃!"𝑃!|𝜓 |! + |𝑃!"𝑃~!|𝜓 |! +
𝜓!",~! 𝜓!,! + 𝜓!",! 𝜓!",~! ,	where	the	interference	term	is	Δ = 𝜓!",~! 𝜓!",! + 𝜓!",! 𝜓!!,~! 	
(Section	2).	Note,	this	decomposition	implies	that	the	conjunctive	statement	F&BT	is	evaluated	in	terms	
of	a	projection	first	to	the	F	subspace	and	then	to	the	BT	one,	an	assumption	justified	through	appeal	to	
heuristics	prioritizing	the	processing	of	more	likely	information	(Gigerenzer	&	Todd,	1996).	If	the	
interference	term	is	negative,	then	the	conjunction	fallacy	follows.	A	negative	interference	term	obtains	
with	two	conditions.	First,		|𝑃!"𝑃~!|𝜓 |!	has	to	be	small,	which	means	that	the	~F	property	makes	the	
BT	one	unlikely.	In	the	Linda	problem,	we	can	ask:	does	knowledge	that	Linda	is	not	a	feminist	make	the	
BT	property	likely	or	unlikely?	This	is	a	reasonable	intuition,	since	the	knowledge	that	a	person	is	not	a	
feminist	does	not	indicate	a	particular	profession.	Second,	the	interference	term	has	to	be	negative,	
which	is	the	case	if	the	state	produced	from	the	sequence	𝑃!"𝑃~!𝜓	is	opposite	compared	to	𝑃!"𝑃!𝜓.	
This	is	reasonable,	since	the	characteristics	of	a	feminist	bank	teller	are	plausibly	opposite	to	those	of	a	
non-feminist	bank	teller.		
	 Gronchi	and	Strambini	(2017)	produced	two	quantum	models	to	account	for	violations	of	
Wigner–d’Espagnat.	One	model	is	based	on	incompatible	questions	in	the	same	space	and	so	this	
approach	is	analogous	to	that	of	Busemeyer	et	al.	(2011).	The	other	model	assumes	that	the	two	
questions	for	each	logical	operation	in	the	Wigner–d’Espagnat	equation	are	evaluated	in	separate	
spaces	and	so	they	are	compatible.	Any	violations	of	Wigner–d’Espagnat	then	emerge	from	
entanglement.	The	two	models	were	shown	to	be	equivalent.		
	 Pothos	and	Busemeyer	(2009)	proposed	a	dynamical	model	for	the	disjunction	effect.	Each	
possibility	for	the	opponent’s	action	(defect,	cooperate)	was	modeled	with	a	separate	Hamiltonian/	
unitary	corresponding	to	how	payoff	affects	probability	to	defect.	Following	a	classical	intuition,	the	
dynamical	process	in	the	unknown	case	can	be	specified	from	that	of	the	known	cases	as	𝑈!(𝑡)⊕
𝑈!(𝑡),	so	that	
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𝑃𝑟𝑜𝑏 𝐷; 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑎𝑠𝑒 = |𝑀!,! ⊕𝑀!,!𝑈!(𝑡)⊕ 𝑈!(𝑡)𝜓! ⊕ 𝜓!|! =
|𝑀!,!𝑈!(𝑡)𝜓! ⊕𝑀!,!𝑈!(𝑡)𝜓!|! = 𝑃𝑟𝑜𝑏 𝐷&𝐷 + 𝑃𝑟𝑜𝑏(𝐷&𝐶),	where	𝑀!,!	is	a	measurement	
operator	(a	projector)	for	the	probability	to	defect,	when	the	participant	knows	the	opponent	will	
defect.	Thus,	if	the	mental	state	changes	by	a	dynamical	process	of	the	form	𝑈!(𝑡)⊕ 𝑈!(𝑡)	the	law	of	
total	probability	is	obeyed.	Quantum	theory	allows	more	complex	dynamical	processes	and	Pothos	and	
Busemeyer	(2009)	employed	a	Hamiltonian	with	a	form	𝐻! ⊕ 𝐻! + 𝐻!"#$% 	so	that	the	corresponding	
unitary	can	no	longer	be	written	as	like	𝑈!(𝑡)⊕ 𝑈!(𝑡).	Interference	effects	can	then	emerge,	allowing	
for	violations	of	the	law	of	total	probability.	Psychologically,	𝐻!"#$% 	aligns	beliefs	and	actions,	thus	
reducing	cognitive	dissonance	(Festinger,	1957).	Denolf	et	al.	(2017)	proposed	an	analogous	quantum	
model	for	a	sequential	version	of	the	Prisoner’s	Dilemma	game	(from	Blanco	et	al.,	2014).	The	main	
features	in	their	model	were	an	elaboration	of	assumptions	regarding	whether	actions	or	beliefs	could	
be	considered	compatible	or	incompatible.	
	 For	the	categorization,	decision	paradigm,	Wang	and	Busemeyer	(2016b)	also	employed	a	
Hamiltonian	with	structure		𝐻!"#$%&'(⨁𝐻!"#$%&',	corresponding	to	how	knowledge	of	each	possible	
categorization	can	affect	decision,	which	was	extended	to	𝐻!"#$%&'(⨁𝐻!"#$%&' + 𝐻!"#$%,	to	allow	
interference	effects	and	violations	of	the	law	of	total	probability;	the	mixer	aligns	categorization	with	
decision.	Moreira	and	Wichert	(2016)	adopted	an	alternative	approach,	employing	Tucci’s	(1995)	
quantum-like	network	theory,	which	propagates	amplitudes	instead	of	probabilities.	Because	
amplitudes	propagate	across	multiple	paths,	quantum	nets	can	give	rise	to	interference	effects,	not	
possible	in	Bayesian	networks.	Moreira	and	Wichert	(2016)	computed	the	interference	terms	in	their	
quantum	network	from	the	face	images	in	the	categorization,	decision	paradigm	(from	Busemeyer	et	al.,	
2009).	They	converted	the	images	into	vectors,	stochastically	determined	assignment	into	good	and	bad	
faces,	and	computed	cosine	similarities	between	images	in	the	different	good/bad	categories.	These	
similarities	were	employed	as	interference	terms	in	the	quantum	network	model.		
	 Yukalov	and	Sornette	(2011)	provided	an	alternative	quantum	framework	primarily	aimed	at	the	
disjunction	effect	and	conjunction	fallacy.	They	defined	a	set	of	prospects,	treated	as	quantum	theory	
operators,	which	lead	to	a	quantity	analogous	to	classical	expected	utility.	This	classical	expected	utility	
quantity	is	complemented	with	a	non-classical	one,	called	an	attraction	factor,	which	arises	from	
interference	effects	in	composite	prospects.	Large	attraction	factors	are	assumed	to	result	in	more	
attractive	prospects.	For	the	disjunction	effect,	there	is	an	attraction	term	for	each	action,	analogous	to	
quantum	interference	terms.	Using	a	uniformity	assumption	for	some	of	the	variables,	uniform	priors,	
and	an	uncertainty	aversion	principle		(reluctance	to	act	under	larger	uncertainty),	they	reconstructed	
probabilities	consistent	with	the	disjunction	effect.	Regarding	the	conjunction	fallacy,	they	used	the	
quantum	law	of	total	probability	(Busemeyer	et	al.,	2011)	and	involved	the	uncertainty	principle	to	
justify	a	negative	inference	term.		
	
5.8.3	Critical	evaluation	and	controversy		
Busemeyer	et	al.’s	(2011)	quantum	model	arguably	revolutionarizes	our	notion	of	correctness	in	
probabilistic	inference,	which	has	been	dominated	by	classical	probability	theory	to	the	point	that	it	is	
hard	to	envisage	alternatives.	With	probabilities	as	subsets	of	some	sample	space,	it	is	impossible	to	
imagine	a	conjunction	as	more	likely	than	a	marginal,	yet	the	geometric	picture	of	probabilities	in	
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quantum	theory	allows	an	intuition	of	how	this	can	be	so.	Busemeyer	et	al.’s	(2011)	work	encompassed	
several	related	fallacies	(the	disjunction	fallacy,	unpacking	effects,	more	complex	conjunctions	etc.).	If	
the	conjunction	fallacy	can	be	‘correct’,	with	quantum	probabilities,	can	it	also	be	rational?	Pothos	et	al.	
(2017)	showed	that	quantum	theory	is	consistent	with	the	Dutch	Book	criterion	for	rational	behavior	(de	
Finetti	et	al.,	1993)	and	that	a	conjunction	fallacy	can	be	rational	when	the	questions	are	contextual	(the	
presence	of	one	question	alters	the	meaning	of	the	other)	or	disturbing.	
	 In	Busemeyer	et	al.’s	(2011)	model	a	conjunction	fallacy	arises	from	incompatibility.	Therefore,	
manipulations	that	encourage	processing	of	the	conjuncts	in	a	concurrent	(compatible)	way	should	
reduce	conjunction	fallacies.	There	is	such	evidence	from	training	on	the	algebra	of	sets	(Agnoli	&	
Krantz,	1989;	see	also	Yamagishi,	2003,	and	Wolfe	&	Reyna,	2010)	to	feedback	training	on	the	classical	
probability	rule	(Nilsson,	2008).	Familiarity	is	also	thought	to	induce	transitions	from	incompatible	to	
compatible	representations	and	Nilsson	et	al.	(2013)	reported	some	evidence	for	the	conjunction	fallacy	
(Nilsson	et	al.,	2013).	Recall	also	Yearsley	and	Trueblood	(in	press)	who	demonstrated	the	co-occurrence	
of	conjunction	fallacies	and	order	effects.	Busemeyer	et	al.	(2011)	assumed	that	regardless	of	the	
presentation	order	of	the	two	conjuncts,	the	more	likely	one	is	processed	first.	There	is	some	evidence	
that	manipulating	processing	order	(e.g.,	through	priming)	supports	the	quantum	account	(Stolarz-
Fantino	et	al.,	2003,	Experiment	2;	Gavanski	&	Roskos-Ewoldsen,	1991).	A	critical	observation	concerns	
the	definition	of	disjunction	in	the	quantum	account,	which	does	not	benefit	from	as	clear	a	justification	
as	the	sequential	conjunction.		

There	have	been	several	models	for	the	conjunction	fallacy.	Tversky	and	Kahneman’s	(1983;	
Shafir	et	al.,	1990)	proposed	a	representativeness	heuristic,	so	that	probability	judgments	are	essentially	
similarity	processes.	Thus,	probabilistic	inference	is	relegated	to	a	more	generic	cognitive	process.	
However,	the	similarity	mechanism	in	representativeness	is	underspecified.	Because	the	quantum	
model	computes	probability	as	representational	overlap	in	a	multidimensional	space,	it	has	been	
advocated	as	a	particular	expression	of	probabilistic	inference	as	similarity	(cf.	Sloman,	1993).	Averaging	
models	compute	conjunctions	as	averages	of	the	probabilities	of	the	conjuncts	(Abelson,	Leddo,	&	
Gross,	1987;	Fantino,	Kulik,	&	Stolarz-Fantino,	1997;	Nilsson,	2008;	Nilsson	et	al.,	2009).	These	accounts	
predict	conjunction	fallacies	regardless	of	causal	links	between	the	conjuncts	(high	rate	of	conjunction	
fallacy)	or	not	(lower	rate).	However,	we	expect	a	conjunction	fallacy	in	cases	such	as	“Mr.	F	has	had	one	
or	more	heart	attacks	and	Mr.	F	is	older	than	55”	but	not	in	“Mr.	F	has	had	one	or	more	heart	attacks	
and	Mr.	G	is	older	than	55”	(Tversky	and	Kahneman,	1983).	
	 According	to	the	inductive	confirmation	account,	probability	estimates	are	driven	by	the	
difference	𝑃𝑟𝑜𝑏 ℎ 𝑒 − 𝑃𝑟𝑜𝑏(ℎ),	where	h	is	a	hypothesis	and	e	is	evidence	(Tentori	et	al.,	2013).	This	
account	dissociates	the	degree	of	conjunction	fallacy	from	the	probability	of	the	more	likely	conjunct.	
Tentori	et	al.’s	(2013)	task	involved	a	hypothetical	woman	who	is	Russian	(R),	lives	in	New	York	(NY),	and	
in	addition	is	an	interpreter	(I).	Their	main	finding	was	𝑃𝑟𝑜𝑏 𝐼 ∧ 𝑁𝑌 𝑅 > 𝑃𝑟𝑜𝑏(𝑁𝑌|𝑅),	even	though	
the	I	possibility	is	less	likely	than	the	~I	one	(Tentori	et	al.,	2013,	express	this	as	𝑃𝑟𝑜𝑏 ~𝐼 𝑁𝑌 ∧ 𝑅 >
𝑃𝑟𝑜𝑏 𝐼 𝑁𝑌 ∧ 𝑅 ).	Thus,	in	this	scenario	and	variants	the	conjunction	fallacy	arises	from	a	less	likely	
conjunct	(being	an	I).	The	quantum	conjunction	fallacy	model	can	cover	Tentori	et	al.’s	(2013)	results	
(Busemeyer	et	al.,	2015).	Additionally,	Busemeyer	et	al.	(2015)	argued	that	order	effects	in	the	
consideration	of	the	conjuncts	(Stolarz-Fantino	et	al.,	2003,	Experiment	2;	Gavanski	&	Roskos-Ewoldsen,	
1991)	support	the	quantum	account,	but	not	the	inductive	confirmation	one.	Finally,	the	quantum	
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account	can	accommodate	manipulations	that	arguably	encourage	compatible	representations	(Agnoli	
&	Krantz,	1989;	Nilsson,	2008;	Wolfe	&	Reyna,	2009;	Yamagishi,	2003),	including	increasing	familiarity	
(Nilsson	et	al.,	2013),	but	consistency	with	the	inductive	confirmation	proposal	is	unclear.			

In	the	probability	theory	plus	noise	account	decision	making	is	based	on	classical	probability	
theory,	but	probability	estimates	are	subject	to	error	(Costello	&	Watts,	2014).	This	error	arises	because	
probability	estimates	are	based	either	on	enumerating	relevant	memory	instances	or	a	mental	
simulation	of	such	instances.	Costello	and	Watts	(in	press)	derived	several	probabilistic	expressions	
which	diverge	depending	on	whether	one	adopts	quantum	rules	or	probability	plus	noise	rules.	Their	
results	appear	to	uniformly	support	their	model,	not	quantum	theory.	Note,	quantum	theorists	have	
been	incorporating	noise	in	their	work	too	(e.g.,	Trueblood	et	al.,	2017;	Yearsley	and	Pothos,	2016).	
However,	noise	has	not	been	explored	for	the	conjunction	fallacy,	because	in	quantum	theory	noise	
emerges	as	a	small	probability	that	the	internal	computation	may	produce	A,	but	one	may	mistakenly	
pronounce	~A.	Therefore,	in	quantum	models	the	role	of	noise	is	relevant	in	situations	of		multiple	
decisions.		

There	are	concerns	for	the	noise	model.	First,	the	mechanism	assumed	to	produce	the	noise	is	
based	on	memory	enumeration	or	mental	simulation,	but	especially	the	latter	seems	implausible,	for	
unfamiliar	questions.	Second,	sampling	independence	for	estimating	related	probabilities	(e.g.,	
marginals	and	a	conjunction)	is	implausible,	but	without	sampling	independence	the	noise	model	cannot	
predict	the	conjunction	fallacy.	Third,	Costello	and	Watts	(2016)	produced	a	conditional	probability	
noise	formula,	but	in	a	more	recent	paper	(Costello	&	Watts,	2018),	they	eschewed	their	own	
conditional	probability	formula	to	model	order	effects	using	a	memory	priming	parameter.	Fourth,	error	
is	implausible	for	completely	impossible	or	certain	events.	Fifth,	Costello	and	Watts’s	(2014)	prediction	
for	a	conjunction	fallacy	relies	on	P(A∧B)	being	close	to	P(A),	but	Tentori	et	al.	(2013)	reported	
conjunction	fallacy	results	at	odds	with	this	requirement.	Finally,	the	noise	model	cannot	accommodate	
conjunction	fallacies,	when	𝑃 𝐴 ∧ 𝐵 ~𝑃 𝐴 > 0.5	;	Yearsley	and	Trueblood	(in	press)	reported	such	
results.	

Do	Costello	et	al.’s	(in	press)	results	challenge	the	quantum	model?	Costello	et	al.	(in	press)	
consider	familiarity	to	equate	with	compatibility	and	there	is	evidence	that	this	is	the	case	(e.g.,	
Trueblood	et	al.,	2017;	Yearsley	&	Trueblood,	in	press).	However,	incompatibility	may	exist	for	familiar	
questions	too,	where	questions	may	induce	different	perspectives	to	each	other,	as	seems	apparent	for	
order	effects	regarding	the	Clinton,	Gore	honesty	questions	(Wang	&	Busemeyer,	2013).	However,	
detailed	coverage	of	the	Costello	et	al.	(in	press)	results	from	the	quantum	model	is	still	needed.		

Boyer-Kassem	et	al.	(2016)	argued	that	a	quantum	model	for	the	conjunction	fallacy	entails	
three	empirical	predictions:	(1)	consistency	with	the	so-called	grand	reciprocity	equalities	(which	they	
derived),	(2)	the	existence	of	order	effects,	and	(3)	consistency	with	the	QQ	equality.	They	reported	
results	which	they	claimed	go	against	the	quantum	model.	Regarding	the	grand	reciprocity	equalities,	
these	were	derived	assuming	reciprocity	and	so	one-dimensional	representations,	but	Busemeyer	et	
al.’s	(2011)	model	is	not	restricted	in	this	way	and	it	seems	unlikely	that	complex	psychological	concepts	
(like	feminism)	would	have	one-dimensional	representations	(Pothos	et	al.,	2013).		

Regarding	the	co-occurrence	of	order	effects	and	conjunction	fallacies,	Boyer	et	al.	(2016)	
considered	questions	from	seven	different	scenarios,	from	well-known	conjunction	fallacy	
demonstrations,	but	reported	order	effects	in	only	two	cases,	no	order	effects	in	two	other	cases,	and	
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ambiguous	results	in	the	remaining	three	cases.	Note,	they	corrected	for	family-wise	error	using	the	
Bonferroni	correction,	which	has	been	criticized	as	conservative	(Nakagawa,	2004;	Perneger,	1998).	
Importantly,	they	did	not	demonstrate	concurrent	conjunction	fallacies,	as	Yearsley	and	Trueblood	(in	
press)	did.	It	is	possible	that	their	sample	was	less	prone	to	order	effects	and	conjunction	fallacies	(their	
participants	were	students	in	economics,	management,	or	medicine).	Their	report	of	failures	to	satisfy	
the	QQ	equality	awaits	further	investigation.		

Gronchi	and	Strambini’s	(2017)	work	brings	into	focus	a	key	issue,	that	violations	of	the	Wigner-
d’Espagnat	inequality	can	arise	either	because	of	incompatibility	in	the	same	space	or	compatible	
representations	in	separate	spaces	with	an	entangled	state.	Both	incompatibility	and	entanglement	
preclude	a	joint	probability	distribution,	but	in	the	former	case	because	of	uncertainty	relations	and	in	
the	latter	because	of	the	impossibility	to	describe	the	corresponding	entities	independently	of	each	
other.	However,	researchers	may	require	a	commitment	to	incompatibility	or	compatibility	in	any	
situation.	In	Gronchi	and	Strambini’s	(2017)	experiments,	questions	regarding	the	color	or	shape	of	
objects	are	likely	to	be	treated	as	compatible	(because	perceptual	physical	properties	like	this	are	
unlikely	to	have	a	contextual	influence	on	each	other),	but	gender	and	likelihood	of	playing	different	
sports	incompatible	(if	different	genders	change	our	perspective	for	likely	sports).		

Pothos	and	Busemeyer	(2009)	showed	that	the	quantum	model	could	describe	the	disjunction	
effect	better	than	a	matched	classical	probability	model	(employing	the	Kolmogorov	forward	equation,	
which	is	the	classical	equivalent	of	Schrodinger’s	equation).	In	Pothos	and	Busemeyer’s	(2009)	approach	
the	transition	from	classical	(no	interference)	to	quantum	(interference	possible)	probabilities	occurs	
within	the	same	framework.	Arguably,	this	model	(first	described	in	Busemeyer	et	al.,	2006)	was	the	first	
quantum	cognitive	model	based	on	a	simple	application	of	quantum	probabilities,	presented	in	a	journal	
followed	by	psychologists.	This	framework	has	been	employed	for	other	broadly	related	findings	
(Trueblood	&	Busemeyer,	2011;	Wang	&	Busemeyer,	2016).	Tversky	and	Shafir’s	(1992)	explanation	for	
the	disjunction	effect	was	based	on	the	idea	of	failure	of	consequential	reasoning.	In	prisoner’s	dilemma	
participants	may	have	a	good	reason	to	defect	knowing	the	opponent	defects	and	a	good	(different)	
reason	knowing	the	opponent	cooperates,	but	lack	clarity	of	why	they	should	defect	in	the	unknown	
case.	Clearly,	such	an	explanation	loosely	constrains	specific	technical	approaches.	One	criticism	of	
Pothos	and	Busemeyer’s	(2009)	model	is	that,	because	of	its	use	of	unitary	dynamics,	probabilities	are	
perpetually	oscillating	and	Pothos	and	Busemeyer	(2009)	assumed	a	cutoff	for	decisions.	The	issue	of	
stabilization	in	quantum	dynamics	is	formally	addressed	with	open	system	dynamics	(e.g.,	Asano	et	al.,	
2011a,	2011b).		

Similar	considerations	apply	to	Wang	and	Busemeyer’s	(2016b)	quantum	model	for	
categorization,	decision	results.	Additionally,	these	authors	discussed	a	signal	detection	theory	model	
(Ashby	&	Townsend,	1986),	for	which,	following	categorization,	the	eventual	decision	can	still	depend	on	
the	stimulus;	for	the	Markov	and	quantum	models,	once	a	categorization	is	made,	the	decision	depends	
only	on	the	categorization.	The	authors	argued	that	signal	detection	theory	would	have	trouble	
accounting	for	interference,	unless	one	introduces	post	hoc	assumptions	regarding	how	the	response	
regions	(for	the	categorizations	and/or	the	decisions)	change	boundaries	depending	on	stimulus	
categorization.	

Denolf	et	al.	(2017)	allowed	outcomes	of	a	rating	scale	to	be	non-orthogonal	vectors,	which	is	
unorthodox	in	quantum	theory.	However,	their	approach	is	broadly	equivalent	to	an	assumption	of	
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POVM	(as	opposed	to	projective)	measurement.	Its	advantage	is	that	it	enables	lower	dimensionality	
spaces	and	non-repeatability	of	measurements.	
	 Moreira	and	Wichert’s	(2017)	quantum	model	for	the	categorization,	decision	violation	of	the	
law	of	total	probability	raises	some	questions.	It	is	unclear	that	the	vectors	in	the	quantum	network	are	
equivalent	to	the	ones	employed	to	compute	the	similarities.	That	is,	there	is	some	doubt	in	whether	
the	equivalence	between	similarities	and	quantum	interference	terms	is	valid.	Additionally,	Moreira	and	
Wichert	(2017)	assumed	a	renormalization	of	the	image	vectors	to	occupy	the	negative	part	of	the	
vector	space,	because	this	leads	to	a	restriction	to	just	destructive	interference	effects	(as	empirically	
observed),	but	this	assumption	could	do	with	further	justification.		

Yukalov	and	Sornette’s	(2011)	framework	was	presented	as	a	general	framework	for	
probabilistic	decision	making,	with	applications	relating	to	the	disjunction	effect	and	the	conjunction	
fallacy.	However,	there	are	some	weaknesses.	Regarding	the	disjunction	effect,	the	uncertainty	aversion	
principle	is	translated	to	a	condition	that	the	uncertainty	factor	for	acting	is	positive	and	the	for	not	
acting	negative,	an	assumption	of	questionable	usefulness,	because	in	some	paradigms	it	is	unclear	
which	option	corresponds	to	acting	or	not	acting.	For	example,	in	Tversky	and	Shafir’s	(1992)	prisoner’s	
dilemma,	there	is	a	suppression	of	the	probability	to	defect	in	the	unknown	condition	and	an	increase	in	
the	probability	to	cooperate.	But	how	can	uncertainty	aversion	inform	a	higher	propensity	to	
cooperate?	Regarding	the	conjunction	fallacy,	it	is	also	unclear	how	uncertainty	aversion	operates,	even	
though	this	ostensibly	determines	the	right	sign	for	the	interference	term.	That	is,	in	what	way	could	
one	assume	that	the	probability	of	a	marginal	is	more	uncertain	than	the	probability	of	conjunctions,	
since	normatively	the	law	of	total	probability	requires	equality?		
	
5.9	Other	judgment	phenomena	
	
5.9.1	Empirical	research		
Basieva	et	al.	(2017)	considered	probabilistic	updating.	The	authors	designed	a	task	based	on	a	
hypothetical	crime	mystery,	with	several	potential	suspects.	Participants	were	initially	presented	with	
some	information	for	guilt	for	the	various	suspects	and	then	with	more	information,	which	was	meant	
to	overturn	expectations	about	initially	unlikely	suspects.		
	 Aerts	et	al.	(2018)	sought	to	provide	a	demonstration	of	entanglement	in	decision	making.	
Participants	were	asked	to	pick	a	pair	of	wind	directions	(e.g.,	North	and	Southwest	vs.	South	and	
Northeast),	that	they	considered	‘good	examples	of	two	different	wind	directions’.	Across	several	trials,	
participants	were	presented	with	choice	sets	including	different	combinations	of	pairs	of	wind	
directions.	By	analogy	with	entanglement	experiments	in	physics,	a	first	system	would	involve	two	
directions	A,	A’	and	a	second	system	two	different	wind	directions	B,	B’,	so	that	overall	we	would	have	
four	combinations	of	wind	directions	(AB,	AB’	etc.),	with	each	combination	specifying	a	trial	(since	e.g.	
each	of	A,	B	are	binary	questions,	there	are	four	possibilities	for	the	combined	question	A,	B	and	
participants	would	choose	one).	The	design	was	fully	within	participants.	The	main	empirical	finding	was	
that	averaged	participant	responses	violated	the	CHSH	inequality,	so	that	a	complete	joint	probability	
distribution	for	the	relevant	events	is	impossible.		
	 The	Ellsberg	paradox	(Ellsberg,	1961)	is	a	decision	task	involving	drawing	colored	balls	from	an	
urn.	The	task	is	to	decide	which	color	will	be	most	likely.	A	particular	color	is	associated	with	a	fixed	
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probability	(say	red),	but	another	one	with	an	unknown	probability	(say	green).	When	participants	are	
told	to	choose	between	a	bet	on	drawing	a	red	ball	vs.	a	green	one,	then	they	choose	the	former.	When	
participants	are	told	to	choose	between	a	bet	on	not	drawing	a	red	ball	vs.	not	a	green	one,	then	they	
also	choose	the	former,	displaying	ambiguity	aversion	(aversion	to	ambiguous	probabilities)	and	
violating	expected	utility	theory.	Dimmock	et	al.	(2015)	showed	that	there	is	ambiguity	aversion	for	
medium	and	high	probabilities	but	ambiguity	seeking	for	low	probabilities.	The	Allais	paradox	(Allais,	
1953)	involves	a	choice	between	two	gambles	A,	B	and	a	second	choice	between	two	further	ones	C,	D.	
Even	though	A	and	C	are	equivalent,	in	the	first	choice	A	is	preferred	but	in	the	second	C	is	not	
preferred,	violating	the	independence	axiom	of	expected	utility	theory.		
	
5.9.2	Quantum	cognitive	models		
Basieva	et	al.	(2017)	compared	classical	probability	updating	(based	on	Bayes	law)	with	quantum	

probability	updating	(based	on	Luder’s	law).	Luder’s	law	can	be	expressed	as	𝑃𝑟𝑜𝑏 𝐴 𝐵 = |!!!!|! |!
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	and	is	equivalent	to	Bayesian	probabilistic	updating,	the	difference	being	that	classical	

conjunction	is	replaced	by	the	quantum	equivalent	for	incompatible	questions,	which	is	sequential	
conjunction.		
	 Aerts	et	al.	(2018)	represented	the	questions	about	wind	directions	with	tensor	products	of	the	
form	(𝜎 ∙ 𝑎)⊗ (𝜎 ∙ 𝑏),	where	a,	b	are	direction	vectors	and	𝜎 = 𝜎! + 𝜎! + 𝜎!,	the	Pauli	spin	matrices.	
In	order	to	describe	correlations	between	binary	measurements	in	two	subsystems	(i.e.,	the	responses	
for	each	of	two	wind	directions,	for	each	subsystem),	one	needs	to	identify	four	direction	vectors	a,	b,	
a’,	b’	and	an	entangled	state.	The	authors	claim	that	there	is	no	guarantee	of	a	suitable	quantum	
representation	of	this	kind.	But,	they	identified	an	entangled	mental	state	and	wind	directions	which	
described	the	observed	correlations.	
	 LaMura	(2009)	provided	a	quantum	framework	for	expected	utility,	called	projective	expected	
utility	theory.	Whereas	expected	utility	theory	is	based	on	objective	outcomes,	projective	expected	
utility	is	based	on	subjective	consequences,	which	are	obtained	as	a	basis	change	from	objective	
outcomes.	The	use	of	a	quantum	framework	for	obtaining	probabilities	allows	for	interference	effects	
and	contextual	dependence,	which	can	accommodate	the	Ellsberg	and	Allais	paradoxes,	amongst	other	
results.	Al	Nowaiti	and	Dhami	(2017)	focused	on	the	Ellsberg	paradox,	aiming	to	capture	both	ambiguity	
aversion	and	ambiguity	seeking	(Dimmock	et	al.,	2015).	They	employed	Feynman’s	rules	for	state	
transitions,	when	the	intermediate	steps	are	known	vs.	not	known.	Briefly,	in	a	transition	𝜑 → 𝜓	
through	𝜒!,	𝜒!,	when	the	intermediate	state	is	observed,	then	the	overall	transition	probabilities	are	
obtained	by	adding	probabilities.	However,	when	it	is	not	observed,	then	the	overall	transition	
probabilities	are	obtained	by	adding	amplitudes,	which	can	lead	to	interference	effects.	This	approach	
could	accommodate	Dimmock	et	al.’s	(2015)	findings,	depending	on	assumptions	of	whether	cognitive	
processing	is	overt	(probabilities	combine)	or	covert	(amplitudes	would	combine),	without	parameter	
manipulation.	Ellsberg	and	Allais	have	been	the	focus	of	other	proposals	(Aerts	et	al.,	2014;	Busemeyer	
&	Bruza,	2012;	Khrennikov	&	Haven,	2009),	which	all	share	some	key	elements	(the	use	of	interference	
terms/	contextuality	to	accommodate	the	paradoxes).		
	



38	 	 Quantum	cognition	
	

5.8.3	Critical	evaluation	and	controversy		
Basieva	et	al.	(2017)	argued	that	Bayes	rule	provides	incomplete	coverage	of	everyday	inference,	
because	it	precludes	large	jumps	from	priors	to	posteriors.	Classically	updated	probabilities	are	linearly	
dependent	on	priors	and	the	ratio	of	likelihoods	is	constrained	by	the	ratio	of	priors,	so	that	low	priors	
will	restrict	posteriors.	Additionally,	zero	priors	require	zero	posteriors,	a	situation	called	by	the	authors	
the	zero	priors	trap.	The	zero	priors	trap	has	a	long	history.	Oliver	Cromwell	allegedly	said	to	the	
members	of	the	synod	of	the	Church	of	Scotland	“to	think	it	possible	that	you	may	be	mistaken”	
(Carlyle,	1885).	The	idea	here	is	that	a	small	probability	should	be	assigned	to	even	highly	improbable	
situations.	Shafer’s	(1975)	model	can	circumvent	the	zero	priors	trap	in	an	otherwise	Bayesian	
framework,	by	organizing	hypotheses	into	groups	and	assigning	a	prior	probability	to	each	group.	
Crucially,	there	is	flexibility	in	how	group	probability	is	divided	amongst	individual	hypotheses,	and	new	
information	could	lead	to	a	reassignment	that	means	that	we	no	longer	need	to	update	from	a	zero	
prior.	However,	Basieva	et	al.	(2017)	showed	that	Shafer’s	(1975)	hypothesis	cannot	explain	their	
results,	but	Luder’s	law	can.		
	 Aerts	et	al.	(2018)	partly	motivated	their	work	as	a	test	of	CHSH	violation	consistent	with	the	
condition	for	no-signaling	from	Dzhafarov	and	Kujala	(2014;	Section	5.4.2).	Their	baseline	data	still	
violated	this	condition,	but	a	transformation	produced	CHSH	violation	together	with	consistency	to	the	
no-signaling	condition.	Dzhafarov	et	al.	(2016)	questioned	this	transformation	and	argued	that	signaling	
accounts	for	CHSH	violations	in	Aerts	et	al.’s	(2018)	experiments.		
	 Regarding	coverage	of	Ellsberg	and	Allais	paradoxes,	quantum	applications	(Aerts	et	al.,	2014;	Al	
Nowaiti	and	Dhami,	2017;	Busemeyer	&	Bruza,	2012;	Khrennikov	&	Haven,	2009;	LaMura,	2009)	share	
the	use	of	interference	and	contextuality.	Al	Nowaiti	and	Dhami	(2017)	extracted	probabilities	
consistent	with	the	Ellsberg	paradox,	without	parameter	manipulation	(contrast	with	Busemeyer	&	
Bruza,	2012;	LaMura,	2009).	A	question	for	such	approaches	is	their	capacity	for	generative	value.	Note	
also	that	detailed	comparisons	with	non-quantum	expected	utility	alternatives	have	not	been	carried	
out.	For	example,	the	Ellsberg	paradox	has	also	been	approached	through	probability	transformations	
(e.g.,	Klibanoff	et	al.,	2005).		
	
6.	Is	it	worth	persevering	with	quantum	cognition	models?		
Having	reviewed	several	cognitive	applications	of	quantum	theory,	we	next	address	questions	critical	for	
this	research	programme.	Is	it	worth	persevering	with	quantum	models?	Inevitably	we	are	led	to	
fundamental	questions	like	what	constitutes	a	strong	theoretical	framework	and	a	good	model.		

A	healthy	theoretical	framework	arguably	fulfills	three	conditions.	First,	its	principles	are	
interconnected,	as	this	limits	arbitrariness.	Second,	there	are	clear	narratives	about	psychological	
process.	Third,	there	are	plausible	assumptions	regarding	computational	demands	for	the	brain.	We	
think	the	prospects	regarding	quantum	theory	are	good.	The	first	characteristic	is	self-evident	in	that	
quantum	theory,	as	a	formal	probabilistic	system,	is	axiomatically	defined.	In	any	specific	quantum	
model	some	additional	assumptions	might	be	needed,	as	a	way	to	bridge	an	abstract	mathematical	
framework	and	cognition.	However,	in	most	cognitive	quantum	models	such	assumptions	have	been	
limited	(cf.	Jones	&	Love,	2011).	Secondly,	the	elements	of	quantum	models	are	typically	assigned	
psychological	meaning.	For	example,	in	static	models,	representations	are	typically	set	by	reference	to	
the	empirical	situation	and	projection	sequences	justified	as	embodying	relevant	contextual	influences	
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(Busemeyer	et	al.,	2011;	Pothos	et	al.,	2013;	Wang	et	al.,	2014).	Entangled	states	are	interpreted	as	
instances	of	strong	connectedness	between	the	relevant	entities	(e.g.,	Bruza	et	al.,	2015).	In	dynamical	
models,	Hamiltonian	parameters	typically	indicate	drifts	to	the	various	options	and	often	interpreted	as	
relevant	utilities	(e.g.,	Pothos	&	Busemeyer,	2009;	Trueblood	&	Busemeyer,	2011).		

Finally,	the	problem	of	computational	tractability	is	shared	by	many	modelling	frameworks.	
Focusing	on	quantum	vs.	classical	probabilities,	the	former	are	often	simpler	than	the	latter,	because	
incompatibility	can	reduce	the	complexity	of	the	required	joint	probability	distributions.	To	use	Tversky	
and	Kahneman’s	(1983)	Linda	example,	a	classical	probability	approach	requires	conjunctions	not	just	
involving	whether	Linda	is	a	bank	teller	or	a	feminist,	but	also	where	she	lives,	her	relationships,	how	
she	looks	etc.	Even	if	many	of	these	probabilities	can	be	automatically	set	through	suitable	priors,	the	
complexity	of	the	probability	distributions	may	still	be	prohibitive.	We	think	the	situation	regarding	
brain	tractability	of	the	postulated	operations	in	quantum	theory	is	at	least	equivalent	to	or	better	than	
that	for	classical	theory	(note,	heuristics	simplifying	classical	computations	could	be	adapted	for	use	in	
quantum	theory,	e.g.,	Sanborn	et	al.,	2010).	Note,	the	idea	that	quantum	probabilities	may	be	simpler	
than	classical	ones	exactly	underwrites	the	point	that	they	may	be	more	likely	to	be	adopted	when	
decision	makers	are	less	engaged	or	familiar	with	a	task	(Trueblood	et	al.,	2017;	Yearsley	&	Trueblood,	in	
press).		

Regarding	specific	models	within	a	framework,	arguably	success	depends	on	balancing	
parsimony	with	empirical	coverage,	comparisons	with	other	formalisms,	and	generative	value.	For	the	
first	criterion,	we	distinguish	between	models	proposed	by	researchers	from	the	psychology	community	
(e.g.,	Busemeyer,	Dzhafarov,	Pothos,	Trueblood,	Wang,	Yearsley)	and	ones	from	other	research	
communities	(physics	and	economics;	e.g.,	Aerts,	Atmanspacher,	Haven,	Khrennikov,	Sozzo).	Amongst	
psychologists,	we	think	there	is	general	agreement	regarding	the	criteria	for	good	models,	as	above,	but	
in	other	disciplines	such	criteria	differ.	So,	we	focus	this	discussion	on	models	proposed	by	psychology	
researchers	and	contest	that	most	such	models	satisfy	the	above	criteria.	First,	there	is	no	evidence	that	
quantum	cognitive	models	are	more	complex	than	non-quantum	ones.	Where	detailed	complexity	
comparisons	were	carried	out,	they	favored	the	quantum	models	(Busemeyer	et	al.,	2015;	Trueblood	et	
al.,	2017).	

Second,	quantum	cognitive	models	have	been	examined	against	relevant	non-quantum	models.	
Regarding	probabilistic	fallacies,	such	as	the	disjunction	effect	(Shafir	&	Tversky,	1992)	or	the	
categorization	decision	paradigm	(Townsend	et	al.,	2000),	quantum	models	have	been	compared	with	
closely	matched	classical	probability	models	(dynamical	models	based	on	the	Kolmogorov	forward	
equation,	e.g.,	Pothos	&	Busemeyer,	2009;	Trueblood	&	Busemeyer,	2011;	Wang	&	Busemeyer,	2015).	
In	such	cases,	we	think	the	motivation	for	employing	quantum	probability	is	compelling:	there	are	
quantum	and	classical	matched	probabilistic	approaches,	human	behavior	indicates	inconsistency	with	
the	latter	because	of	apparent	interference	effects,	so	we	adopt	the	former.	In	other	cases,	for	example,	
similarity	judgments,	there	has	been	a	perception	of	adequate	existing	models	(e.g.,	Ashby	&	Perrin,	
1988;	Krumhansl,	1988)	but	closer	scrutiny	revealed	inconsistencies	and	other	problems	(Pothos	et	al.,	
2013;	Yearsley	et	al.,	2017).	Note,	one	can	ask	whether	there	are	results	indicating	a	necessity	for	
quantum	probabilities.	Inconsistencies	with	classical	principles	can	typically	be	classically	
accommodated	through	conditionalization	(Section	5.1.3;	Dzhafarov	&	Kon,	in		press).	However,	
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quantum	theory	has	been	designed	for	such	results	and	can	often	offer	more	elegant	and	parsimonious	
models.		

The	conjunction	fallacy	(Tversky	&	Kahneman,	1983)	has	attracted	an	enormous	amount	of	
attention	and	it	is	here	that	the	quantum	model	has	been	scrutinized	the	most.	Its	main	weaknesses		
concern	the	assumption	that	the	predicates	in	the	conjunction	are	ordered	in	a	certain	way	and	the	
origin	of	the	assumption	of	incompatibility.	We	believe	that	its	main	strengths	are	wide	coverage	of	
related	fallacies	and	the	fact	that	it	provides	an	alternative	perspective	for	correctness	and	rationality	in	
probabilistic	inference	(Pothos	et	al.,	2017).	We	argued	that	alternative	formalisms	can	suffer	from	
narrow	scope	(Busemeyer	et	al.,	2015)	and	incoherent	assumptions	(as	for	Costello	&	Watts,	2016).		

One	related	question	is	this:	are	there	results	disproving	quantum	cognitive	models?	Boyer-
Kassem	et	al.	(2016)	and	Costello	et	al.	(in	press)	argued	that	this	the	case,	in	terms	of	failures	of	
consistency	with	the	QQ	equality,	constraints	that	ought	to	be	adhered	to	if	people	were	employing	
quantum	probabilities,	and	lack	of	association	between	different	results	predicted	from	incompatibility	
(e.g.,	order	effects	and	conjunction	fallacies).	There	are	two	responses.	First,	we	argued	that	some	of	
these	criticisms	are	incomplete	(Section	5.8.3).	Second,	we	think	it	would	be	extremely	surprising	if	all	
behavioral	phenomena	can	be	modeled	within	the	quantum	framework.	In	the	same	way	that	
increasingly	researchers	are	advocating	a	view	of	cognition	as	involving	a	Bayesian	part	and	a	non-
Bayesian	part	(e.g.,	Kahneman,	2001;	Sloman,	1996),	we	think	there	will	be	bounds	of	applicability	in	
quantum	cognition	models.	For	example,	regarding	super-correlations,	while	quantum	representations	
can	violate	the	Bell	bound,	they	are	restricted	to	an	alternative	bound	–	the	so-called	Tsirelson	bound	–	
lending	themselves	to	simple	tests.	Inevitably,	certain	cognitive	processes	would	be	outside	the	remit	of	
probabilistic	frameworks,	classical	or	quantum	and	would	require	(plausibly)	heuristic	explanations.	The	
question	is	then	whether	there	are	enough	successful	cognitive	applications	to	warrant	further	interest	
in	quantum	models,	and	our	answer	is	yes.		

Regarding	generative	value,	many	of	the	major	applications	of	quantum	theory	to	cognition	
have	involved	established	results,	such	as	the	conjunction	fallacy	(Tversky	&	Kahneman,	1983),	and	so	a	
concern	is	whether	the	applicability	of	quantum	models	might	be	restricted	to	re-descriptions	of	
previous	results.	However,	this	review	has	presented	examples	of	quantum	models	which	have	had	
generative	value	in	psychology.	First,	there	have	been	examinations	of	compositionality	in	memory	or	
conceptual	combination,	using	the	Bell/	CHSH	inequality,	providing	new	empirical	tests	and	evidence	
(e.g.,	Aerts,	2009;	Aerts	et	al.,	2015;	Bruza	et	al.,	2015;	Cervantes	et	al.,	in	press).	Second,	even	though	
constructive	influences	in	psychology	have	been	explored	before	(e.g.,	Sharot	et	al.,	2010),	quantum	
cognitive	models	make	specific	and	constrained	predictions	regarding	such	influences,	because	of	the	
requirement	of	the	collapse	of	the	state	vector.	Such	predictions	have	been	utilized	in	empirical	
demonstrations	(Kvam	et	al.,	2014;	Yearsley	&	Pothos,	2016)	and	have	been	the	basis	for	a	proposal	of	a	
new	decision	bias	(White	et	al.,	2014,	2015).	Third,	the	QQ	equality	has	been	a	surprising,	a	priori	
prediction	from	quantum	theory,	supported	in	many	data	sets	(Wang	et	al.,	2014).	Fourth,	the	links	
between	familiarity,	cognitive	style	of	thinking	(Frederick,	2005),	and	the	emergence	of	fallacies,	such	as	
the	conjunction	fallacy	and	order	effects	(Trueblood	et	al.,	2017;	Yearsley	&	Trueblood,	in	press),	have	
provided	a	novel	individual	differences	perspective	to	dual	route	ideas	in	cognition.	There	are	other	
predictions	which	have	yet	to	merit	detailed	empirical	examination,	for	example	regarding	sequencing	in	
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temporal	structure	(e.g.,	Atmanspacher	&	Filk,	2010).	Overall,	we	think	that	the	application	of	quantum	
theory	to	cognition	has	had	considerable	empirical	generative	impact.		

Regarding	generative	promise,	we	finally	note	that	quantum	systems	can	allow	speedier	
computations	than	classical	systems,	in	certain	cases,	due	to	entanglement	and	superposition	(e.g.,	
Grover,	1997;	Shor,	1994).	Thus,	the	possibility	arises	that	quantum-like	computation	at	the	cognitive	
level	may	be	the	factor	partly	enabling	the	apparent	speed	with	which	we	are	able	to	make	inferences.	
Such	ideas	are	potentially	promising,	but	currently	underdeveloped.	One	difficulty	is	that	quantum	vs.	
classical	speedup	has	been	documented	only	for	specific	problems	and	there	is	a	challenge	to	translate	
them	to	psychological	ones.	Another	is	that	quantum	speedup	typically	requires	quantum	physical	
systems,	for	example	it	depends	on	quantum	gates,	which	operate	on	(real)	superposition	or	entangled	
states	(e.g.,	Behrman	et	al.,	2000;	Dong	et	al.,	2008).	As	we	are	committed	to	a	classical	brain,	it	is	
unclear	how	to	apply	such	ideas	to	quantum	cognition.	An	alternative	way	to	approach	this	issue	is	
whether	probabilistic	learning	might	be	aided	via	quantum	instead	of	classical	representations	and	there	
are	indications	that	this	might	be	the	case	(Bond,	2018).		
	
7.	What	are	the	main	weaknesses	of	quantum	cognitive	models?		
We	have	created	this	review	with	a	critical	mindset	and	we	summarize	some	key	points	here.	First,	most	
quantum	cognitive	models	depend	on	incompatibility,	as	incompatibility	allows	the	interference	effects	
necessary	to	violate	the	law	of	total	probability,	produce	order	effects	etc.	How	can	incompatibility	be	
determined	a	priori?	Some	investigators	assess	incompatibility	empirically,	e.g.,	with	order	effects	
(Boyer-Kassem	et	al.,	2016;	Busemeyer	&	Wang,	2014;	Yearsley	&	Trueblood,	in	press).	Others	have	
employed	proxy	measures	for	incompatibility,	notably	style	of	thinking	(a	more	reflexive	vs.	reflective	
style	of	thinking	is	more	likely	to	lead	to	incompatible	representations;	Frederick,	2005;	Trueblood	et	al.,	
2017;	Yearsley	&	Trueblood,	in	press).	Low	familiarity	with	question	combinations	is	also	thought	to	
make	incompatible	representations	more	likely	(Busemeyer	et	al.,	2011;	Costello	et	al.,	in	press;	
Trueblood	et	al.,	2017).	Overall,	however,	a	more	general	approach	is	needed,	which	would	include	
clarity	on	the	nature	of	incompatibility	in	cognition	and	how	it	arises.		
	 A	second	related	issue	has	been	whether	to	adopt	a	dynamical	vs.	non-dynamical	approach.	This	
question	arises	in	many	areas	of	psychology	(e.g.,	a	decision	researcher	can	adopt	a	non-dynamical	
heuristic	vs.	a	drift	diffusion	model).	However,	in	quantum	cognition	this	choice	is	particularly	
significant,	since	it	determines	whether	interference	can	arise	from	incompatibility	(e.g.,	Busemeyer	et	
al.,	2011)	or	compatibility	and	‘mixing’	amplitudes	across	two	initially	well-separate	spaces	(e.g.,	Pothos	
&	Busemeyer,	2009;	Trueblood	&	Busemeyer,	2011).	This	in	turns	affects	whether	there	is	an	
expectation	of	cooccurrence	involving	violations	of	the	law	of	total	probability	and	other	fallacies,	such	
as	question	order	effects	(cf.	Boyer-Kassem	et	al.,	2016;	Yearsley	&	Trueblood,	in	press).	Conceptually,	
there	seems	to	be	a	clear	distinction	between	the	two	situations,	since	interference	due	to	
incompatibility	is	about	whether	one	question	can	chance	the	perspective	or	context	for	another	one	
(Pothos	et	al.,	2017),	while	interference	due	to	mixing	from	dynamical	evolution	relates	to	whether	two	
perspectives	which	individually	recommend	the	same	action	are	inconsistent	with	each	other	and	so	
clash	when	brought	together	(as	in	failures	of	consequential	reasoning	in	Shafir	&	Tversky,	1992).	
Operationally,	distinguishing	between	these	two	situations	awaits	further	work	(cf.	Gronchi	&	Strambini,	
2017).	Note,	the	adoption	of	dynamical	models	in	cognitive	psychology	typically	goes	hand	in	hand	with	
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interest	in	modelling	response	times,	but	as	yet	there	has	been	limited	such	application	with	quantum	
models	(e.g.,	see	Fuss	&	Navarro,	2013,	who	provided	an	open-systems	quantum	model	for	reaction	
time	distribution	in	a	two-alternative	forced	choice	task).			
	 Third,	violations	of	Bell	inequalities	have	led	to	controversy	in	psychology	(as	in	physics).	There	
are	several	difficulties.	In	physics,	CHSH	inequalities	are	derived	under	precise	assumptions	so	that	
violations	of	these	inequalities	can	be	traced	to	the	rejection	of	particular	assumptions.	This	is	essential	
so	as	to	characterize	the	cause	of	Bell	violations,	particularly	‘spooky	action	at	a	distance’,	with	its	far-
reaching	implications	for	space-time	separability.	In	psychology,	as	we	assume	a	classical	brain,	‘spooky	
action	at	a	distance’	is	precluded.	Dzhafarov	et	al.’s	(2015,	2016;	Dzhafarov	&	Kujala,	2013)	
generalization	of	the	CHSH	inequality	enables	a	test	of	whether	a	CHSH/	Bell	violation	is	due	to	
signaling/	disturbing	measurements	vs.	genuine	contextuality.	However,	some	investigators	would	be	
employing	Bell	as	a	test	of	compositionality	and	it	may	matter	less	whether	the	cause	is	signaling	vs.	
contextuality	(e.g.,	Bruza	et	al.,	2015).	Another	difficulty	is	that	a	violation	of	Bell	does	not	motivate	a	
quantum	model	in	the	straightforward	way	that	empirical	evidence	for	an	interference	effect	does.	Even	
though	quantum	models	can	violate	the	Bell	bound,	this	occurs	only	for	certain	states	and	for	certain	
question	pairs	and	so	there	is	an	additional	onus	for	researchers	wishing	to	make	a	link	between	Bell	
violation	and	a	quantum	model.	Note,	signaling	is	connectedness	and	it	is	easy	to	show	violations	of	Bell	
in	connected	classical	systems	(Aerts,	1982).		
	 Some	other	difficulties	in	creating	quantum	cognitive	models	are	not	unique	to	such	models	
(Busemeyer	et	al.,	2014;	Yearsley	&	Busemeyer,	2016).	A	space	of	states	needs	to	be	specified;	an	initial	
state	needs	to	be	motivated,	typically	by	assuming	uniform	uncertainty	regarding	the	available	options;	
a	choice	of	static	vs.	dynamical	approach	needs	be	made;	the	relevant	questions	need	to	be	
represented.	The	latter	can	require	more	work	for	a	quantum	model	than	otherwise,	since	the	precise	
relation	between	incompatible	representations	needs	to	be	specified.	Sometimes	the	approach	is	
general	and	conditions	for	the	required	effect	are	examined	across	representational	options	(e.g.,	
Busemeyer	et	al.,	2011).	Sometimes	a	specific	representation	is	assumed,	motivated	from	the	form	of	
the	stimuli	(e.g.,	White	et	al.,	2014)	or	parameterized	and	fitted	from	empirical	results	(e.g.,	Trueblood	
et	al.,	2017).	A	recent	advance	has	been	the	method	of	Busemeyer	and	Wang	(in	press)	for	extracting	
quantum	representations	from	frequency	tables	violating	classical	constraints.	In	principle,	this	
procedure	can	be	adopted	much	like	how	e.g.	categorization	researchers	have	employed	
multidimensional	scaling	to	extract	vector	representations	(e.g.,	Nosofsky,	1984,	1992).	A	future	
challenge	for	this	technique	is	how	to	accommodate	representations	beyond	rays	(Pothos	et	al.,	2013).		
	 In	conclusion,	there	are	many	reasons	to	be	optimistic	about	quantum	cognitive	models.	
Quantum	theory	provides	a	sophisticated	technical	framework	for	probabilistic	inference,	based	on	
novel	explanatory	concepts,	which	complements	modeling	work	using	classical	probability	theory.	To	
the	extent	that	psychology	researchers	believe	that	part	of	cognition	should	be	approached	as	
probabilistic	inference,	it	makes	good	sense	to	explore	alternative	probabilistic	frameworks,	and	
quantum	theory	is	a	possibility	with	considerable	potential	and	promise.		
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