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Abstract

We examine the efficiency of centralized versus decentralized management of spatially-
connected renewable resources when users have heterogeneous preferences for con-
servation vs. extraction. Resource mobility and heterogeneity induce a spatial
externality, while spatial preference heterogeneity drives a wedge between users’
privately optimal extraction rates. We first address these market failures analyti-
cally and show that the first is most efficiently handled with centralized planning
while the second is best tackled with decentralized management. Except in special
cases, neither approach will be first best, but which arises as second best depends
on the relative strength of preference heterogeneity versus spatial mobility of the
resource. We illustrate the theory, and test its robustness, with a numerical exam-
ple.
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1 Introduction & Background

We seek to determine the conditions under which spatially-connected renewable resources

are more efficiently managed by a central planner or by decentralized property right hold-

ers. A rich and enlightening literature reveals that spatial concerns, such as mobility and

heterogeneity in production, can significantly alter efficient management of renewable

natural resources. Indeed, both the natural science and economics literatures have fo-

cused on characterizing these spatial issues and deriving efficient policy responses to them

(Brown and Roughgarden 1997; Hastings and Botsford 1999; Sanchirico and Wilen 2005;

Costello and Polasky 2008). A key finding is that a central planner, when armed with

perfect scientific information about the spatial characteristics of the resource, can per-

fectly design a system of spatial harvests (Kaffine and Costello 2011), taxes (Sanchirico

and Wilen 2005), and/or natural areas (Sanchirico et al. 2006) to maximize welfare over

space and time.

Yet a second, at-least-as-ubiquitous source of spatial heterogeneity exists in the pref-

erences of resource users themselves, and this source has gone practically unnoticed by

these literatures.1 People, residing in different spatial locations, may have different pref-

erences for resource extraction versus conservation. The stark lack of treatment of this

second source of heterogeneity is surprising for two reasons. The first reason is practical:

preference heterogeneity underpins many of the greatest debates of the day regarding use

of public trust natural resources such as fisheries, forests, and wild game. For example,

commercial extractors, recreational users, providers of commercial eco-tourism services,
1An exception is Arnason (2009) who accounts for preferences but implicitly assumes an aspatial

world. Arnason (2009) shows that an Individual Tradable Quota (ITQ) system between commercial

users, recreational users, and conservationists can yield an efficient allocation, assuming each group can

internally resolve the free-rider problem.
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and conservationists will likely have very different notions of what constitutes optimal

management of natural resources. The second reason is more academic: preference het-

erogeneity features prominently in the public economics literature on fiscal federalism and

policy design (Oates 1999; Besley and Coate 2003; Alm and Banzhaf 2012),2 in which a

central issue is the optimal “scale” of policy - should decisions be made at the federal,

state, local, or even individual level? Despite the obvious parallels to issues of spatial re-

source management, this literature has not bridged to natural resource economics, which

introduces new challenges via intertemporal resource dynamics and spatial externalities.

To address this gap, we formalize a theory of natural resource federalism, incorporating

insights from the literature on both spatial natural resource economics and fiscal and

environmental federalism.

To illustrate the renewable resource problems of interest, consider a typical coastal

fishery in the developing tropics where different communities extract from a shared fish

stock. Because fish move, one community’s harvest imposes an externality on others.

Often these communities will have different preferences; one may favor commercial ex-

traction, another desires trophy size fish for recreational fishing, still another desires high

biodiversity for scuba diving tourists, while yet another may prefer conservation for its

own sake. Examples of these heterogeneous fisheries, where users differ in their prefer-

ences for conservation versus extraction, are not hard to come across and include iconic

places such as Galapagos, Indonesia, and Baja California, Mexico. But the basic eco-

nomic theory applies equally well for migratory game species such as lions and zebra in
2For example, Oates (1999) states: “By tailoring outputs of such goods and services to the particular

preferences and circumstances of their constituencies, decentralized provision increases economic welfare

above that which results from the more uniform levels of such services that are likely under national

provision.”
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Africa, elk and wolves in the Yellowstone ecosystem, and waterfowl in the great migra-

tory flyways of North America. In addition to the “traditional" challenges of managing a

mobile renewable resource like those described above, resource managers may also have

incomplete information regarding the preferences of the different communities.

While the established literature provides some loose guidance for solving the renewable

resource management problems described above, to our knowledge none simultaneously

address the spatial and dynamic aspects of renewable resource management with uncer-

tainty and multiple sources of heterogeneity (preferences, growth, connectivity, economic

productivity) across multiple users. Conceptually, List and Mason (2001) is the most

closely related as it examines CO2 emissions and compares a decentralized, asymmetric

two-player game-theoretic outcome against a central planner that picks a one-size-fits-all

policy. While dynamics emerge via the stock of uniformly mixed CO2, this is a different

class of dynamics relative to the intertemporal growth dynamics in renewable resources.

Eichner and Runkel (2012) also shares some similarities in that they examine transbound-

ary emissions in a setting where the capital stock in multiple symmetric districts can be

affected by local tax policies via savings decisions. Growth of the capital stock is endo-

genized via a two-period model, however preferences are known with certainty and thus

they compare the decentralized outcome with that of a perfectly informed social planner.

In this paper, we analytically compare alternative management regimes over a natural

resource that exhibits spatial heterogeneity in both resource characteristics and prefer-

ences. Our “patchy” spatial environment allows for heterogeneity in resource productivity,

connectivity, economic returns, and user preferences across the natural resource. We begin

by deriving the first-best management of spatial resources given resource and preference

heterogeneity as a benchmark. Simultaneously accounting for both resource production
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externalities (due to resource mobility) and spatial preference heterogeneity to maximize

social welfare is an onerous task. A benevolent social planner must do so by accounting

for the effect of harvesting in one location on the future stock in all other locations, and

for the preferences in each location for extraction versus conservation. However, that

precise level of spatial and temporal information and control is often unrealistic. Rather

we will assume that the regulator has complete information about the spatial ecosystem

dynamics, but incomplete information about the heterogeneity in preferences.

Under the assumption that the regulator only knows the distribution of preference

types in the economy, we explore two second-best alternatives to the omniscient social

planner. First, under the top-down approach of Centralized Planning (CP), the plan-

ner could utilize the ecosystem information to design spatial policy despite incomplete

information about preferences.3 Second, the planner could devolve all authority to de-

centralized users who know their own preferences, a bottom-up approach we denote De-

centralized Management (DM). For example, the planner could assign spatial property

rights and then the owners of those spatial property rights would select privately optimal

extraction rates in their own areas and thus compete in a dynamic and spatial game

against one another.4 Returning to the examples discussed above, in each case a resource

manager is charged with regulating extraction of a mobile natural resource and faces a

fundamental challenge of whether to engage in top-down control, where she tries to set
3Such an approach is consistent with many real-world spatial natural resource settings. For example,

in managed fisheries, it is typically the regulator, not the individual harvesters, who determines annual

quotas.
4For the purposes of exposition, our concept of decentralized management is at the individual resource

user, while centralized planning is at some higher level of authority (e.g. state). However, the key insights

of our model can be applied whenever there are potentially different levels of natural resource management

(state versus local, national versus state, or international versus national, etc.).
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spatial regulations to satisfy the average preferences of her constituency, or to delegate

bottom-up control, where local communities set local policies to manage their resource.5

Contrasting these two second best alternatives with the first best solution reveals an

important tension in managing natural resources characterized by both spatial resource

and preference heterogeneity.6 On one hand, spatial management rules need to reflect

heterogeneous spatial externalities arising from connectivity between resource patches.

This has been the focus of nearly all of the spatial resource economics literature to date.

But on the other hand, spatial management rules must also account for differences in

preferences over how management is carried out over space. It then follows that while

centralized planning may adequately capture spatial externalities between resources, only

the average user is truly satisfied with the management rule due to lack of the information

by the central planner regarding local preferences (Hayek 1945; Oates 1999). By contrast,

decentralized management allows users to select private management rules reflecting pre-

cisely their specific preferences within each location, but will ignore any spatial externali-

ties created across locations (Bhat and Huffaker 2007; Janmaat 2005). A concrete policy
5For example, consider the challenge of determining how many elk hunting permits to issue in each

of 163 hunting districts in the state of Montana, recognizing that elk migrate and that preferences

vary widely across districts from extreme conservationists (who would favor no hunting at all) to avid

sportsmen (who might favor managing to population to maximize hunting opportunities).
6We note that our analytical treatment of the alternative institutional options is deliberately stylized

to focus on the tension between resource and preference heterogeneity and derive the conditions under

which CP or DM delivers the greatest social welfare. Nevertheless, there are clearly other factors that

may influence why centralization or decentralization may be preferred for natural resource management.

For example, the public choice literature raises important concerns about the incentives of centralized

bureaucracies and regulators of natural resources (Anderson and Leal 1991). Another strand of literature

emphasizes the potential for decentralized cooperation and coordination amongst resource users (Ostrom

1990). Our analysis should be viewed as complementary to these established literatures.
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implication of our results is that if the primary challenge facing natural resource manage-

ment is resource heterogeneity (and the resulting spatial externalities), then centralized

planning may dominate decentralized management. However, if the primary challenge is

differences in preferences of various users, then delegation under decentralized manage-

ment may be the second-best management option. The analysis also reveals that the

most socially challenging resources to manage are those that exhibit high degrees of both

resource heterogeneity and preference heterogeneity. For that class of resources, neither

the CP nor the DM approach will perform well, suggesting a high value from coordina-

tion to approach the first best solution. These intermediate cases are analyzed in greater

detail with a numerical example.

2 A patchy resource model with spatial heterogene-

ity

Our discrete-time, discrete-space model extends Reed (1979) and closely follows Costello

and Polasky (2008) and Costello et al. (2015). We describe the biological model, economic

model, and governance structures below. We note that the various stylized assumptions

of the biological and economic model below can be relaxed and explored numerically

(see Section 5.2). Nonetheless the particular structure we adopt allows us to generally

capture the features (e.g heterogeneity in growth, connectivity, economic returns, and

preferences) of the research question questions we examine while maintaining analytical

tractability.
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2.1 Growth and movement

We assume that the resource consists of N spatially-connected patches (a “metapopu-

lation” model). The timing is such that the resource stock in patch i (i = 1, ..., N) at

the beginning of period t is given by xit. This stock is then harvested hit, yielding the

residual stock (i.e. escapement) at the end of the period given by eit ≡ xit − hit. The

residual stock grows and then disperses, whereby concave growth in patch i is denoted

fi(ei), which may be patch specific, and the fraction of the stock that moves from patch

j to i is given by Dji (where D is an N x N matrix of dispersal).7 Thus, the resource

dynamics in patch i are given by:

xit+1 =
N∑
j=1

fj(ejt)Dji. (1)

Resource growth may differ across space (indicated by the subscript on fj(ejt)), which

may be driven by differences in ecology and habitat, while heterogeneity in the dispersal

relationships Dji may be driven by differences in oceanography, wind patterns, trade

volumes, or other processes. We assume that for each of these resource patches, there is a

single agent who exclusively manages her own patch in discrete time periods, t = 0, 1, 2, ...,

either by selecting an escapement level herself (under DM) or by executing an escapement

plan specified by a central authority (under CP).8 As noted in the previous literature (e.g.
7Consistent with the previous literature, the growth function satisfies the conditions: f ′i(e) >

0, f ′′i (e) < 0 and fi(0) = 0. Note that specifying different timing, such as dispersal occurring before

growth, or alternative representations of dispersal, for example density-dependent dispersal, would affect

analytical tractability. See Costello and Polasky (2008) for further details.
8Of course, this individual agent could represent more than one person. For example, if resource

patches represent a series of Territorial Use Right Fisheries (TURFs), then the agent’s decisions may

represent the collective will of the users of that particular TURF (Cancino et al. 2007; Wilen et al.

2012).
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Reed (1979), Kapaun and Quaas (2013), and Costello et al. (2015)), choosing residual

stock eit or harvest hit as the decision variable is formally equivalent; however, selecting

residual stock as the decision variable is mathematically more convenient.

2.2 Economic model

In addition to heterogeneity in growth and movement, we also allow for heterogeneity in

economic returns and preferences. Preferences reflect the utility derived from economic

returns versus residual stock, for example from recreational or conservation benefits.

Patch-i sub-utility in period t associated with economic returns on harvest hit is given

by (pi(xit − eit︸ ︷︷ ︸
≡hit

))βh , where pi > 0 is the net price per unit harvest in patch i and βh ≤ 1

allows for potential decreasing returns in economic outcomes.9 The period-t sub-utility in

patch i derived from the residual stock is given by (keit)βe where the parameter k reflects

the marginal benefit of residual stock and βe ≤ 1 allows for potential decreasing returns

to residual stock.10 The preference for extraction profit relative to resource stock is given

by the patch-specific parameter, αi. Thus, total period-t utility in patch i is given by:

Uit(xit, eit) = αi(pi(xit − eit))βh + (1− αi)(keit)βe (2)

where αi ∈ (0, 1) ∀i. Greater preference heterogeneity is represented by a greater range

across αi; preferences are identical if and only if αi = αj,∀i, j.

The parameter αi is meant to capture a broad range of different user preferences for

natural resources. For example, if αj is near 1, then patch j places weight primarily on
9Net price may vary across patches due to spatial heterogeneity in the underlying resource quality or

due to the patch-specific cost of harvest.
10We initially assume that preferences and thus utility are defined over local (patch-specific) residual

stock eit. We also consider the case where preferences are defined over global residual stock
∑

j ejt in an

extension below.
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extraction profits (a pure harvester - the case almost exclusively analyzed by the resource

economics literature), while αj near 0 represents a conservationist who gains little utility

from extraction relative to maintaining a large resource stock (a pure conservationist).11

Intermediate levels of αj could represent recreational users who may derive benefits from

some use or extraction, but also value an increasing resource stock.12 As a heuristic,

consider a coastal fishery exploited by three communities. Village A favors extraction,

village B caters to recreational trophy-seeking clients, and village C caters to scuba diving

tourists. In that case αA > αB > αC . Another example concerns waterfowl that move

between area Y (a wildlife refuge with bird-watchers) and area Z (a hunting club). There

αY < αZ .

2.3 Governance Regimes

Our main objective is to analyze welfare and resource outcomes of this model under

three distinct governance regimes to highlight tradeoffs between centralized planning and

decentralized management for this class of problems. We initially consider the first-best

(FB) solution to the above problem, where a fully-informed social planner determines

optimal spatial extraction in each time period and each ofN resource patches to maximize

the present value sum of utility over all agents. To the best of our knowledge this

benchmark model has never been proposed or solved. We solve this problem analytically
11Note that by conservation, we mean conservation for its own sake. In our dynamic context, users

who place weight on extraction also have some incentive for conservation to the extent that it increases

the discounted stream of future extraction profits.
12For example, recreational fishermen may place positive weight on resource stock size to the extent

that a larger stock translates to a larger fish size (as is the case in a delay-difference model (Hilborn and

Walters 1999)), increasing the probability of catching a trophy fish.
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and use the solution as a benchmark against which to compare other management regimes.

While the FB approach will (in the absence of information or management costs)

deliver an ideal aggregate welfare result, obtaining the necessary information regarding

preferences in each resource patch may be costly or infeasible. As such, we consider the

second best efficiency of alternative management regimes given asymmetric information

about preferences. Will a higher level of utility be achieved by centrally planning harvest

in each patch (without knowing each agent’s preferences), or by devolving management

decisions (e.g assigning spatial property rights) to individual patch owners who each know

their own preferences but compete non-cooperatively over extraction? Under this model,

global utility from FB can never be exceeded by either of the other approaches. Thus our

main goal is to rank regimes, CP versus DM, under different assumptions about the un-

derlying resource (e.g. how heterogeneous is resource production and connectivity across

space) and the underlying preferences (how heterogeneous are preferences across space).

But along the way we will be able to explicitly solve the dynamic spatial optimization

problems under each of the three governance regimes.

3 First-best solution

We begin with a purely theoretical analysis, where we adopt two assumptions for tractabil-

ity. First, we assume period-t utility in patch i is linear in economic returns and extant

resource stock:

Assumption 1. βh = βe = 1.

Second, we assume parameter values and growth functions are such that optimal escape-

ment choices are interior for all governance regimes:
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Assumption 2. The parameters {αi, D, k, pi} and growth function fi(ei) are such that

an interior solution exists (0 < eit < xit, ∀i) across all governance regimes.

The above assumptions will allow us to obtain sharp analytical solutions below, while in

the numerical section we explore relaxations of these assumptions (non-linear utility, the

presence of corner solutions).13

The first-best solution to the above spatial dynamic problem consists of a harvest plan

chosen by a social planner who can synchronize harvest decisions across space and time to

maximize the present value of global utility. This omniscient planner must simultaneously

account for the heterogeneous resource dynamics and heterogeneous preferences. Letting

xt represent the vector of stocks [x1t, ..., xNt] and et represent the vector of residual stocks

[e1t, ..., eNt], the dynamic programming equation for the first-best problem is thus:

Vt(xt) = max
et

N∑
i=1

(αipi(xit − eit) + (1− αi)keit) + δVt+1(xt+1) (3)

If any resource or preference heterogeneity exists (e.g. if fi(ei) 6= fj(ej), Dij 6=

Dkl, or αi 6= αj), then different harvest policies across space will be chosen. This is a

complex problem, but different versions (which lack conservation utility and preference

heterogeneity) have been addressed previously by Costello and Polasky (2008) and Kaffine

and Costello (2011).

Differentiating with respect to residual stock eit gives the following necessary condition

for an interior solution:

−αipi + (1− αi)k + δ
N∑
j=1

∂Vt+1(xt+1)
∂xjt+1

∂xjt+1

∂eit
= 0 ∀i (4)

The first term in Equation 4 represents the present period marginal costs of foregone

harvest, the second term represents the present period marginal conservation benefits
13In the numerical exercise, we also confirm that there exist parameter values that do in fact generate

interior solutions ∀i across all governance regimes per Assumption 2.
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of additional residual stock, and the third term captures the marginal benefit in future

periods to all patches from residual stock growth and dispersal from patch i.

Our first result is to show that Equation 4 has a closed form solution, summarized

below:

Proposition 1. First-best residual stock in patch i is time-independent and is given by:

f ′i(eFBi ) = 1
δ

[
αipi − k(1− αi)∑N

j=1 αjpjDij

]
(5)

Proof. All proofs are provided in the Appendix.

Proposition 1 represents a first-best, spatial golden rule for a spatially-connected

renewable resource with heterogenous resource characteristics and user preferences. The

FB decision maker should extract the resource in patch i down to the level indicated by

Equation 5. Doing so in every patch and every period in perpetuity ensures the maximal

present value of utility across the entire spatial domain.14 Because fi(e) is an increasing

concave function, it is straightforward to show that this policy implies maintaining a lower

residual stock level in patch i when (1) the discount factor is low (i.e. the future is heavily

discounted), (2) the marginal conservation value (k) is low, and/or (3) the patch-specific

price pi is high. The denominator captures the complicated link between preferences,

economic returns, and connectivity between patches. Despite this complexity, it is clear

that residual stock in patch i will be higher if it primarily disperses to relatively valuable

patches (pj is high).
14Crucially, the fact that the optimal choice of residual stock is independent of the state variable is a

result and not an assumption. Furthermore, it has nothing to do with our choice of escapement as the

control. The exact same result would obtain had we used harvest as the control. The FB decision maker

is accounting for all spatial and dynamic consequences in each and every time period when choosing the

residual stock level above, as the residual stock in patch i in period t does effect xjt+1 in all connected

patches.
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The following corollary summarizes the relationship between first-best residual stock

and connectivity and preferences.

Corollary 1. The first-best residual stock in patch i is increasing in self-retention (Dii),

out-dispersal (Dij), i’s utility preference for conservation (1− αi), and utility preference

for extraction in other connected patches (αj).

While Equation 5 ensures first best management, calculating and implementing this

optimal spatial extraction pattern would require detailed spatial information that may be

difficult in practice to obtain. In the next section, we consider two second-best policies: a

centralized policy that makes use of information on the distribution of preferences, versus

a decentralized policy that delegates decision-making to individual patch owners.

4 Centralized Planning vs. Decentralized Manage-

ment

4.1 Centralized planning

Under centralized planning (CP), a well-meaning central planner is completely informed

about the underlying resource dynamics but knows only the distribution from which

preferences are drawn, not the individual preferences in each patch location.15 We first

derive a useful lemma.
15This may be a generous assumption for how central resource managers actually behave. Indeed,

they may attempt to accommodate users with different preferences to some extent, but whether they

also explicitly account for the underlying spatial resource heterogeneity is the subject of much debate in

the literature (see Sanchirico and Wilen (2005)). This suggests a possible third institutional regime in

which the central planner ignores both resource heterogeneity and preference heterogeneity.
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Lemma 1. The expected utility under a distribution of α is equal to the utility under the

expected preference parameter, ᾱ.

Lemma 1 conveniently establishes that, due to the linearity of utility, the value

function and necessary conditions under CP can be determined by replacing αi with

ᾱ ≡ ∑
αi/N in Equations 3 and 4. Under Centralized Planning the optimal harvest

policy in patch i is summarized in the following proposition:

Proposition 2. Under Centralized Planning, optimal residual stock in patch i is time-

independent and is given by:

f ′i(eCPi ) = 1
δ

[
ᾱpi − k(1− ᾱ)
ᾱ
∑N
j=1 pjDij

]
(6)

Proposition 2 establishes that, like the FB, the CP also has time-independent, but

patch-dependent, residual stocks. Importantly, while Proposition 2 reveals that the op-

timal residual stock for the Centralized Planner in patch i will depend only on the av-

erage preferences, the residual stock still differs across space. For example, compare two

patches A and B that are identical except for their dispersal characteristics: A tends to

disperse resource stock toward high value patches (those with high prices) while B tends

to disperse toward low value patches. Inspecting Equation 6, patch A will have a large

denominator on the right hand side such that the optimal residual stock will be larger

in A than in B. This accords with economic intuition but ignores possible differences

in preferences across space. To streamline the analysis, we will occasionally make use

of a condition that renders patches symmetric with respect to some characteristics,16 as

follows:
16Note, however, that even under Condition 1 patches can differ in resource production (fi(·) 6= fj(·))

and preferences (αi 6= αj), and out-dispersal from a patch can differ from self-retention within that patch

(Dik 6= Dkk).
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Condition 1. pi = p ∀i, Dij = Q ∀j 6= i, and Dii = D ∀i.

While we will not require Condition 1 for most of our results, it will in some cases

enable us to prove necessity of certain results (when without it, we could only prove

sufficiency). We will be explicit about when Condition 1 is being invoked. We will also

occasionally make use of the additional condition on the growth functions:

Condition 2. fi(e) = f(e) ∀i and f ′′′(e) ≥ 0.

The following corollary compares the Centralized Planner’s policy to the first-best policy.

Corollary 2. a. If αi = ᾱ ∀i, then eCPi = eFBi .

b. Under Condition 1, if αi
(
<
>

)
ᾱ, then eCPi

(
<
>

)
eFBi .

c. Under Condition 1, if eCPi = eFBi ∀i, then αi = ᾱ ∀i.

d. Under Conditions 1 and 2, global residual stock is larger under FB than under CP.

Thus, under homogeneous preferences, CP exactly replicates the first-best solution.

But when preferences are heterogeneous the harvest rules diverge. There are two reasons

for this. Inspecting the numerator of Equation 6, consider a patch i for which preferences

lean toward conservation (αi < ᾱ). In that setting, the central planner would call for

excessively high extraction in patch i (the reverse is true if αi > ᾱ). Inspecting the

denominator, centralized planning ignores the fact that connectivity results in dispersal

to patches and may leave too little or too much residual stock relative to FB.17 Under

Conditions 1 and 2 it is also possible to show that the global stock (summed over the

entire spatial domain) is larger under FB than under CP.
17In other words, centralized planning is equivalent to assuming that the preference for additional

extraction revenue from dispersed stock is identical regardless of where that dispersal occurs.
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4.2 Decentralized Management

An alternative institutional arrangement is Decentralized Management (DM) under which

there is no coordinating central planner. Rather, spatial property rights are defined over

each of the N resource patches and each is managed by a single agent who optimizes

the harvest decisions in his own patch to maximize his own utility, conditional upon the

choices made in all other patches. Thus, the N private property right holders interact in

a spatial dynamic game.

Solving for the optimal feedback control rule for owner i and finding the equilibrium

of these rules across N owners is a demanding task. But it turns out that this game has

a special structure under which the optimal harvest strategy for owner i depends linearly

on the state in patch i. This special structure implies that while the strategies will differ

across patches, the equilibrium residual stock in patch i is time-independent and can be

written as an explicit function of only patch i parameters. This result is summarized

below.

Proposition 3. Under Decentralized Management, the patch i optimal residual stock is

time-independent and is given by:

f ′i(eDMi ) = 1
δ

[
αipi − k(1− αi)

αipiDii

]
(7)

Intuitively, then, one might expect special cases to arise under which Decentralized

Management gives rise to harvest policies (and thus welfare) that are identical to those

under first-best management. Indeed, such cases exist, as is summarized below:

Corollary 3. a. eDMi = eFBi ⇐⇒ Dij = 0, ∀j 6= i.

b. eDMi < eFBi ⇐⇒ Dij > 0 for some j 6= i.

c. Global stock under FB exceeds global stock under DM ⇐⇒ Dkl > 0 for some k 6= l.
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Out-dispersal from patch i (Dij) always reduces the residual stock, and as such, any

externality from patch i drives a wedge between the harvest policies under DM and the

FB.

4.3 Centralization versus decentralization

Our main objective is to derive the conditions under which society would prefer a cen-

tralized planner approach (despite incomplete information regarding preferences) versus a

decentralized property rights approach (under which owners compete noncooperatively).

The results above immediately reveal cases under which one or the other of these repro-

duces the first best, and is thus strictly preferred by society:

Proposition 4. a. With preference heterogeneity, but no resource externality (αi 6= αj

for some i, j and Dij = 0 ∀i 6= j), DM exactly reproduces the first-best and (in

general) CP does not, thus DM � CP.18

b. With a resource externality, but no preference heterogeneity (αi = αj ∀i, j and

Dij > 0 for some i 6= j), CP exactly reproduces the first-best and DM does not, thus

DM ≺ CP.

Proposition 4a sharpens a loose intuition that motivated this paper: decentralized

management approaches, such as assigning spatial property rights, can perfectly solve

the problem of spatial heterogeneity in preferences, while the centralized approach, with

imperfect information over preferences, cannot. Thus, in the absence of spatial external-

ities, the decentralized approach is preferred to the centralized approach. By contrast,
18The qualifier “in general” refers to the fact that we earlier invoked Condition 1 to prove neces-

sity. Even if Condition 1 fails to hold, the result still typically holds, but there are special parameter

combinations where it would not hold.
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when we exchange the source of the problem, so spatial externalities are present, but

spatial heterogeneity in preferences is absent, this result is reversed. Under the condi-

tions of Proposition 4b the institutional challenge is that the underlying resource itself

produces an externality in the classical common-pool sense; each patch recognizes that

some fraction of the resource produced on its patch will be captured by its neighbors.

Thus, in this setting, Decentralized Management drives each owner to over-extract the

resource. By contrast, Centralized Planning will completely internalize this externality,

and in a case where all owners have identical preferences (αi = ᾱ ∀i), no problem arises

when the central planner effectively averages across owners’ preferences. Thus, in this

case, the centralized approach is preferred to the decentralized approach.

While these special cases help sharpen intuition, they only give a loose sense of insti-

tutional design in the presence of both preference heterogeneity and spatial externalities.

It turns out that the intuition derived above continues to hold outside of these special

cases. We prove this mathematically with a continuity argument and we summarize the

result as follows:

Proposition 5. a. If the primary challenge facing resource managers is differences

in preferences of various users, then DM � CP .

b. If the primary challenge facing resource managers is resource connectivity, then

DM ≺ CP .

Proposition 5 reveals that even when both challenges are present, provided that one

effect is sufficiently large and the other is sufficiently small, we can unambiguously sign

society’s preference of DM over CP (or vice versa). However, this sharp theoretical result

is eroded when both sources of heterogeneity are present and significant. In those cases,

neither DM nor CP is first best and which is second best becomes an empirical question.
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For that class of problems, the solutions from Propositions 1-3 provide the necessary

calculations to compare DM to CP; we will do so in Section 5.2.

5 Extensions, refinements, and an illustrative exam-

ple

While the model setup introduced in Section 2 was quite general, obtaining analytical

results required making some fairly restrictive assumptions. Furthermore, while our the-

oretical results in Propositions 1-5 provide general insights about the conditions under

which decentralization will be welfare-enhancing, the model complexity prevented us from

making concrete predictions about the behavioral and welfare effects in the presence of

both resource and preference heterogeneity. While we have argued that our qualitative

results are unlikely to be altered by reasonable relaxation of our assumptions, we will

examine this conjecture with a numerical analysis. In this section we undertake a num-

ber of supplementary analyses designed to test the robustness of our results to model

assumptions.

5.1 Global vs. local conservation preferences

We begin by examining a change in the way we model conservation preferences. In our

original model, the agent in patch i derived conservation utility only from resource stock in

patch i and did not explicitly derive utility from resource stock in other locations. We call

these “local” conservation preferences. The assumption of local conservation preferences

is probably appropriate for many use values such as scuba diving and eco-tourism, but

may not be appropriate for many non-use values such as the existence of biodiversity.
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Thus, an equally reasonable assumption is that agents derive conservation utility from the

aggregate (system-wide) resource stock, regardless of where the agent physically resides.

To account for this possibility, here we will allow conservation demand to depend on the

aggregate stock, which (invoking Assumption 1) gives rise to patch i utility of:

Uit(xit, et) = αipi(xit − eit) + (1− αi)k
N∑
j=1

ejt (8)

Following the above methodology, we derive optimal harvest rules under this change

in assumptions. The resulting optimal residual stocks are summarized as follows:

Proposition 6. When conservation preferences are defined over aggregate residual stock

in the spatial system, the optimal residual stock under FB, CP, and DM are respectively

given by:

f ′i(êFBi ) = 1
δ

[
αipi − k

∑N
j=1(1− αj)∑N

j=1 αjpjDij

]
(9)

f ′i(êCPi ) = 1
δ

[
ᾱpi − kN(1− ᾱ)
ᾱ
∑N
j=1 pjDij

]
(10)

f ′i(êDMi ) = 1
δ

[
αipi − k(1− αi)

αipiDii

]
(11)

A comparison between the above expressions and their counterparts (Equations 5, 6

and 7) reveals a number of useful insights. First, êFBi > eFBi , so the efficient residual stock

under global conservation preferences is always larger than that under local preferences.

However, êDMi = eDMi , so the decentralized property owner will not change her residual

stock under global preferences. Since eDMi < eFBi (see Corollary 3), this suggests that

global preferences always exacerbate the distortion caused by decentralization. The effect

of global conservation preferences on residual stock for CP are less clear. Here, êCPi > eCPi ,

so (like FB) Centralized Planning will increase residual stock under global preferences.

It turns out that under global preferences, the distortion from CP can either grow or

shrink. These results are summarized as follows:
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Corollary 4. Compared to the case of local conservation preferences, global conservation

preferences have the following effects:

a. Residual stock under DM is farther from first-best

b. Residual stock under CP can either be farther, or closer, to first-best.

When conservationists have global preferences, the distortion caused by decentralized

management is exacerbated, while the distortion caused by centralized planning can be

abated. Corollary 4a is a direct consequence of decentralized property right owner behav-

ior - global preferences do not affect individual property owner behavior (because they

can only influence local behavior). Because decentralized managers ignore the effect of

their residual stock decisions on global conservation preferences, an additional externality

is created (in addition to the production externality associated with spatial connectivity

across patches). Corollary 4b is more nuanced and claims that the gap between CP and

FB residual stock can either grow (as it did under DM) or shrink (which would imply

a smaller distortion). While the proof requires careful analysis, some intuition can be

gleaned. First, suppose out-dispersal (Dij for j 6= i) is small. In this case, the resource

externality is small so even though CP will fail to capture heterogeneous preference, she

does a reasonable job of replicating FB residual stocks. In that case, invoking global pref-

erences turns out to exacerbate the distortion. Instead, if out-dispersal is large, then the

spatial dynamics become even more important - CP not only fails to capture local prefer-

ence heterogeneity, but also fails to capture the important effects of dispersal to patches

with different preferences. In this case, the distortion shrinks under global preferences.

These nuances are more carefully drawn out in the proof to Corollary 4.

We have shown that global conservation preferences always imply larger stocks under

efficient spatial management (FB), that the distortion caused by decentralization always
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grows, and that the distortion caused by centralized planning can either grow or shrink

depending on system characteristics. This analysis can have important policy and wel-

fare implications. First, it suggests that even if decentralized management works “pretty

well” under local conservation preferences, it may fail miserably under global conservation

preferences. Conversely, even if centralized planning was far from efficient under local

conservation preferences, it may perform quite well under global conservation preferences.

Finally, in cases in which the distortion is exacerbated under global conservation prefer-

ences (which is a large class of cases), the analysis suggests an even greater importance

of moving toward first-best management of the spatial system.

5.2 Numerical example

Returning to the base case of local conservation preferences, we now develop an illustra-

tive numerical example to test the robustness of results to several model assumptions. In

particular, we undertake three numerical experiments. First, we use the numerical exam-

ple to address the welfare preference for DM versus CP in the presence of both preference

and resource heterogeneity. This involves numerically solving the first-order conditions

(Equations 5, 6, and 7), and simulating the resulting present value utility under each

regime. Second, we explore the possibility of corner solutions. Our analytical results are

proven only when residual stocks are “interior” (i.e. under Assumption 2). Alternatively,

corners may be possible in which a given patch owner finds it optimal to extract all of

the resource stock (so eit = 0) or none of the resource stock (so eit = xit). Examining

how corner solutions affect our main theoretical results involves the complex task of nu-

merically solving the spatial-dynamic optimization problem and game that arises. The

high-dimensionality of the state and control space make this a challenging problem to
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solve numerically. The third numerical experiment involves asking whether the presence

of nonlinearities in utility will qualitatively affect our conclusions. In particular, we allow

the utility function to be nonlinear in harvest and/or resource abundance. Again, this

involves numerically solving a complicated spatial-dynamic optimization and game.

To accomplish these tasks, we develop an illustrative three-patch model with the

following features and parameterization:

• Resource growth in patch i is given by: fi(e) = e + rie(1 − e/Ki), where r =

[.523, .527, .438] and K = [130.3, 121.8, 102.6].

• Utility is given by: Ui(ei, xi) = αi(xi− ei)β + (1−αi)(kei)β, where αi is given below

and we examine a range of values for k > 0 and β ≤ 1.

• Resource movement (dispersal) is given by D =

.813 Q Q

Q .771 Q

Q Q .718


,

where we examine a range of values for the parameter Q.

• Environmental preferences are given by: α = [.5 − ε, .5, .5 + ε], where we examine

a range of values for the parameter ε.

While this parameterization is meant to be illustrative only, it builds on the numerical

example provided in Costello et al. (2015), where we aggregate patches by island. Under

this parameterization, increased preference heterogeneity is controlled by ε and increased

resource heterogeneity is controlled by Q.
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5.2.1 Federalism under resource and preference heterogeneity

One of the key findings of our theoretical model is that decentralizing management of

natural resources is first-best in the absence of resource movement and central planning

is first-best in the absence of preference heterogeneity (Proposition 4). We also showed

that, while neither will be first best if both types of heterogeneity are present, as long

as resource movement is “small,” DM will still dominate (and as long as preference het-

erogeneity is “small,” CP will still dominate). But if both types of heterogeneity are

present and are sufficiently large, our analytical results thus far provide little guidance

about management regime choice. To address this issue, we employ Equations 6 and 7,

which are the first-order conditions (given an interior solution exists) defining the equi-

librium optimal residual stocks under central planning and decentralized management,

respectively. To explore the welfare preference of CP vs. DM as a function of the degree

of preference heterogeneity (parameterized by ε above) and resource heterogeneity (pa-

rameterized by Q above), we solve Equations 6 and 7 over a large parameter space of ε

and Q (Figure 1).

Figure 1 displays a parameter space of ε ∈ [0, .16] and Q ∈ [0, .1]. All solutions in this

parameter space are interior (that is, they satisfy Assumption 2) under all regimes, so

Equations 5, 6, and 7 apply exactly. For any given combination of parameters within this

space, we calculate the optimal residual stocks across the three patches and the resulting

system-wide present value of utility. The curve in Figure 1 divides the parameter space

into two regions. Above the line, utility under CP exceeds utility under DM, and below

the line the opposite result holds. We indicate welfare loss relative to FB by the shading

in Figure 1, where darker shading indicates greater loss. Several interesting findings derive

from this figure. First, consistent with Proposition 4, there is no loss from implementing
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Figure 1: Parameter space over which central planner or decentralized management dom-

inates. Darker shading indicates greater welfare loss under the preferred second best

regime relative to first best.

CP (relative to FB) provided preference heterogeneity is zero, and there is no loss from

implementing DM provided resource mobility is zero (shading is white along the axes).

Second, consistent with Proposition 5, if preference heterogeneity is “small,” CP clearly

dominates DM, and if resource mobility is “small,” DM clearly dominates CP. Third, the

figures makes it clear that the loss from second-best management (whether CP or DM)

is largest when both kinds of heterogeneity are large (shading is darkest as you move

up and right on the figure). Finally, the curve in Figure 1 provides a precise numerical
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illustration of the conditions under which CP dominates DM, and vice-versa.

Figure 2 displays the results from three different parameterizations, whereby either

resource or preference heterogeneity is fixed. The first row of Figure 2 corresponds to

the parameterization described above; the bottom two rows are discussed below. The

vertical axis of all subplots shows the present value utility of DM (relative to FB, solid

line) and CP (relative to FB, dashed line), and the horizontal axes display variation in

either resource (left panels) or preference heterogeneity (right panels). Focusing on the

top row panels of Figure 2, when Q = 0 (so there is no resource mobility), DM achieves

the same level of utility as does FB. However, increasing resource mobility Q erodes

welfare under DM and eventually CP is preferred (left subplot). The right subplot shows

that when ε = 0 (so there is no preference heterogeneity), CP achieves the same utility

as FB.

5.2.2 Corner solutions

The analytical results from this paper assume interior solutions. While this is a common

assumption in resource models (and is likely to be empirically relevant in many real-

world cases) there are also interesting cases in which we might expect this assumption to

be violated. Two kinds of corner solutions are possible. First, a patch owner may find

it optimal to extract the entire resource stock from her patch, so eit = 0. This might

occur, for example, if her self-retention is small and she does not place much weight on

conservation. The second kind of corner occurs when a patch owner (or social planner)

wishes to leave a residual stock that exceeds the starting stock. Hitting this corner implies

eit = xit. Either case presents a technical challenge as the first order conditions provided

in Equations 5, 6, and/or 7 would no longer apply. A natural question is: Suppose the
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parameters are such that a corner solution obtains, what will be the effect on our main

analytical results?

To examine this question we numerically solved the dynamic spatial optimization

problem (for FB and CP) and the dynamic spatial game (for DM) using the parameter-

ization described above. In the case of FB and CP, the state of the system has three

dimensions (x1t, x2t, and x3t), and the control has three dimensions (e1t, e2t, and e3t).

Aside from the growth and dispersal constraints, we also have 0 ≤ eit ≤ xit. We solved

the optimization problem for FB and CP using numerical dynamic programming tech-

niques (backward induction using value function iteration). Solving the DM problem

involved the additional step of calculating the best response functions for each of the

three owners, at each time step for each possible state, and finding the fixed point of

those best response functions.

For some parameters (e.g. those in Figure 1 and those in the top panels of Figure

2), interior solutions exist under all regimes (FB, CP, DM); in those cases, our numerical

backward-induction results match the results from simply solving the analytical first order

conditions. But for other parameters, corner solutions exist in some patches, for some

regimes. The purpose of this subsection is to determine whether our main result, that

CP is first-best without preference heterogeneity and DM is first-best without resource

mobility, still holds under corner solutions. This analysis is displayed in the middle row

panels of Figure 2; all parameters represented in those panels result in corner solutions.

In the absence of resource mobility (so Q = 0, left panel), profit under DM is equivalent

to profit under FB, but profit under CP is not; this supports Proposition 4a. In the

absence of preference heterogeneity (ε = 0, right panel), CP reproduces FB, but CP does

not; this supports Proposition 4b.
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Figure 2: Welfare of DM versus welfare of CP (both relative to FB) for different parameter

values. Top panels illustrate interior solutions for the numerical model in Section 5.2.

Middle panels illustrate corner solutions and bottom panels illustrate solutions for the

nonlinear utility model.

5.2.3 Model nonlinearities

Deriving analytical results required making some special assumptions about the utility

function. Namely, our analytical results rely on Assumption 1, whereby extractive util-

ity is linear in harvest and conservation utility is linear in residual stock. While these

assumptions may make sense in some systems, it is easy to think of real-world excep-

tions that would violate this assumption. For example, if demand facing a fishery is
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downward-sloping, then utility would be a concave function of harvest. Concave utility

establishes a link between time periods, and would destroy the time independent nature

of optimal residual stock in each patch. While this would substantially complicate the

analytics because it fundamentally changes the strategies pursued in each patch, we do

not anticipate that introducing small nonlinearities will alter the qualitative conclusions

of this model (referring to Proposition 4). The purpose of this section is to test that

claim using the numerical model described above.

The numerical dynamic-spatial model discussed above is agnostic about the degree

of nonlinearity on utility (parameterized by β = βh = βe), so it is a straightforward

matter of examining how β < 1 affects Proposition 4. The bottom rows panels of Figure

2 analyze this case.19 Two main results are worth noting. First, even though introducing

nonlinear utility alters the residual stock outcomes, Proposition 4 seems to stand - DM is

still first-best when Q = 0, and CP is still first-best when ε = 0. Second, comparing the

top row of panels in Figure 2 with the bottom row of panels in Figure 2, incorporating

small nonlinearities in utility have only a small impact on overall utility and on the

ranking across policies. This numerical evidence seems to support our conjecture that,

while nonlinear utility does substantially complicate the analytics, incorporating small

nonlinearities in utility does not qualitatively affect the main findings in this paper.

5.3 Further discussion

A number of other modeling assumptions deserve further discussion. First, we have

assumed that costs are proportional to harvest. Instead, for some resources, marginal

harvest costs may vary inversely with the resource stock. As the stock is drawn down,
19Except for βh and βl, the parameters in the bottom panels of Figure 2 match the parameters from

the top panels.
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the resource becomes less dense, and more costly to extract (Clark 1990). While we have

not explicitly analyzed that case here, we speculate that stock effects may push CP to

be more preferred - a CP will account for how residual stock (and dispersal) from patch

i affects marginal harvest costs in patch j, while DM will not.

Second, we raise the possibility of information acquisition. A primary motivation for

this paper is that asymmetric information concerning local preferences may exist between

resource users and policy makers. This raises the possibility that the policy maker could

collect information on spatial users’ preferences in order to fine-tune the CP’s manage-

ment decisions. However, it should be noted that doing so could involve, for example,

(costly) contingent valuation studies (Carson et al. 2001) that elicit conservation prefer-

ences (Alberini and Kahn 2009). Future research that utilized the framework developed

above to measure the benefits of information gathering weighted against the costs could

prove beneficial.

Third, we have assumed that the central planner has perfect information regarding

resource characteristics. A promising extension would be to allow local users to have

better resource information than the central planner. We conjecture that this would

raise the efficiency of DM.

Finally, we consider the possibility of coordination among spatial property right own-

ers. While the key limitation of the Centralized Planner is incomplete information, the

key limitation of Decentralized Management is the lack of coordination over spatial ex-

ternalities. But provided transaction costs are sufficiently low, this could be overcome via

Coasian bargaining or profit sharing (Wiggins and Libecap 1985; Libecap and Wiggins

1985; Kaffine and Costello 2011). Because it seems plausible that transaction costs are

prohibitively high (particularly when N is large), we have focused on non-cooperation.
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But even if a profit sharing mechanism were possible to implement, it can be shown that

such a mechanism would fail to reproduce the first best in the presence of conservation

preferences. This result arises because pooling profits ignores the conservation margin

of utility.20 Recovering FB would require that conservationists somehow contribute their

(true) willingness to pay for conservation to the profit sharing pool. To our knowledge,

this mechanism has never been analyzed; we regard this as a fruitful area of research.21

6 Conclusion

We have analyzed the relative merits of central planning versus decentralized manage-

ment of natural resources and have compared their resource and welfare outcomes to

those under first-best management. The first-best solution reveals an important ten-

sion in managing natural resources characterized by both spatial resource and preference

heterogeneity. On one hand, spatial management rules need to reflect heterogeneous ex-

ternalities arising from resource movement. But management rules must also account for

differences in preferences, which may not be known by the regulator. We show that while

centralized planning may adequately capture spatial externalities between resources, only

the average user is truly satisfied with the management rule due to lack of the information

by the central planner regarding local preferences (Hayek 1945; Oates 1999). By contrast,
20In fact, decentralized management under profit sharing can lead residual stocks to exceed the first-

best, as local conservation benefits are not shared while fishery profits are, and thus profit sharing

incentivizes inefficiently high conservation.
21One could also consider incentive schemes akin to the Falkinger Mechanism (Falkinger 1996; Falkinger

et al. 2000), whereby spatial property right owners are rewarded or penalized based on their escapement

decisions relative to their peers. Further research into designing such a mechanism in the context of spatial

and dynamic natural resources may yield important insights for decentralized resource management.
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decentralized management (such as spatial property rights) allows users to select private

management rules reflecting precisely their preferences within each location, but will ig-

nore any spatial externalities created across locations (Bhat and Huffaker 2007; Janmaat

2005). A concrete policy implication of our results is that if the primary challenge facing

natural resource management is resource heterogeneity (and the resulting spatial exter-

nalities), then centralized planning may dominate decentralized management. However, if

the primary challenge is differences in preferences of various users, then delegation under

decentralized management may be the second-best management option.

As governments in both the developed and the developing world continue to seek

ways to reduce the economic and environmental losses associated with the common pool,

spatial management has become increasingly pursued. While the prior literature on fiscal

and environmental federalism provide useful insights into questions of the optimal “scale”

of policy in a natural resource context, intertemporal dynamics and spatial connectivity

introduce new challenges. As such, the issues of natural resource federalism considered

in this paper are likely to increase in importance and warrant further inquiry.
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A Proof of Proposition 1

Proof. Per Assumptions 1 and 2 and by using residual stock (et) (rather than harvest)

as the control variable, this complicated dynamic optimization problem has a special

structure, called “state independent control,” for which the first-order conditions are

independent of stock, xit (Costello and Polasky 2008).22 This allows us to separate

the problem temporally, and implies that residual stock is location-specific, but time-

independent (consistent with Proposition 1 in Costello and Polasky (2008)). This result

accords with, but extends, existing resource models with perfectly elastic demand for

which a bang-bang solution is implemented to achieve an optimal residual stock (see

Costello et al. (2015)). Because optimal residual stock in patch i is constant, additional

units of stock are simply harvested, so the shadow value on stock is just the value of an

additional unit of harvest: ∂Vt+1(xt+1)
∂xjt+1

= αjpj ∀j. The final term, ∂xjt+1
∂eit

equals f ′i(eit)Dij by

rewriting Equation 1 in terms of xjt+1 and differentiating with respect to eit. Thus, what

would otherwise be an extremely complicated spatial temporal optimization problem has

a first order condition that compactly reduces from Equation 4 to:

−αipi + (1− αi)k + δ
N∑
j=1

αjpjf
′
i(eit)Dij = 0 ∀i. (12)

Rearranging yields the residual stock rule in Proposition 1.

B Proof of Corollary 1

Proof. We wish to show that deF B
i

dDii
> 0, deF B

i

dDij
> 0, deF B

i

dαi
< 0, and deF B

i

dαj
> 0. Let

φ(Dii, Dij, αi, αj) = 1
δ

[
αipi−k(1−αi)∑N

j=1 αjpjDij

]
, which is the right-hand side of Equation 5. Re-

22If harvest was the control, then to achieve a desired residual stock would require a state-dependent

control by the identity eit ≡ xit − hit.
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arranging Equation 5 such that f ′i(eFBi ) − φ(Dii, Dij, αi, αj) = 0, then by the implicit

function theorem, de
F B
i

dDii
= ∂φ/∂Dii

f ′′i (ei) , and similarly for Dij, αi, and αj. Thus, we have:

deFBi
dDii

= − αipi(αipi − k(1− αi))
δ(∑N

j=1 αjpjDij)2f ′′i (ei)
> 0 (13)

deFBi
dDij

= − αjpj(αipi − k(1− αi))
δ(∑N

j=1 αjpjDij)2f ′′i (ei)
> 0

deFBi
dαi

=
(pi + k)(∑N

j 6=i ajpjDij) + kpiDii

δ(∑N
j=1 αjpjDij)2f ′′i (ei)

< 0

deFBi
dαj

= −pjDij(αipi − k(1− αi))
δ(∑N

j=1 αjpjDij)2f ′′i (ei)
> 0

C Proof of Lemma 1

Proof. Rewriting utility to show the dependence on αi, Uit(xit, eit;αi), reveals that it is

linear in the random variable, αi, so Eαi
[Uit(xit, eit;αi)] = Uit(xit, eit; ᾱ).

D Proof of Proposition 2

Proof. By Lemma 1, the expected utility when only the distribution of αi is known

is equivalent to the utility of the expected value ᾱ ≡ ∑
αi/N . Thus, the Dynamic

Programming Equation is given by:

Vt(xt) = max
et

N∑
i=1

(ᾱpi(xit − eit) + (1− ᾱ)keit) + δVt+1(xt+1) (14)

with first-order conditions:

−ᾱpi + (1− ᾱ)k + δ
N∑
j=1

∂Vt+1(xt+1)
∂xjt+1

∂xjt+1

∂eit
= 0 ∀i (15)

By the proof for Proposition 1, the first-order conditions can be expressed as:

−ᾱpi + (1− ᾱ)k + δᾱ
N∑
j=1

pjf
′
i(eit)Dij = 0 ∀i. (16)
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Rearranging yields the residual stock rule in Proposition 2.

E Proof of Corollary 2

Proof. The proof to part (a) hinges on the comparison of Equations 5 and 6. If αi = ᾱ ∀i,

then the right-hand side of Equation 6 equals the right-hand side of Equation 5, which

confirms the result.

To prove the inequality cases in part (b), note that deFBi = deF B
i

dαi
dαi +∑

j 6=i
deF B

i

dαj
dαj.

From Corollary 1, deF B
i

dαi
< 0, and under Condition 1, deF B

i

dαj
= − Q(αip−k(1−αi))

δ(Q(Nᾱ−αi)+Dαi)2f ′′i (ei) > 0.

Because deF B
i

dαj
is constant (under Condition 1) across all j 6= i, then deFBi = deF B

i

dαi
dαi +

deF B
i

dαj

∑
j 6=i dαj. Finally, if αi > ᾱ, CP is analogous to setting dαi < 0, which also implies

that ∑j 6=i dαj > 0, which allows us to unambiguously sign deFBi > 0. Thus, if αi > ᾱ,

then eCPi > eFBi . The reverse is true if αi < ᾱ.

For part (c), set Equations 5 and 6 equal for all i and invoke Condition 1. Rearranging

implies:
αi(p+ k)− k

Qp(Nᾱ− αi) +Dpαi
− ᾱ(p+ k)− k
Qp(Nᾱ− ᾱ) +Dpᾱ

= 0 (17)

The left hand side is an implicit function that defines αi as a function of all model

parameters. The equivalent expression for a different patch, say j, is found by simply

replacing αi by αj in Equation 17. Thus αi = αj ∀i, j, which implies that αi = ᾱ ∀i.

For part d), the Conditions ensure that all patches are symmetric in all aspects ex-

cept αi. From Equation 5, residual stock can be written as eFBi (φ(αi)), suppressing the

notation for other parameters. If eFBi (φ(αi)) is convex, then by Jensen’s Inequality, the

residual stock at the average preference (under CP) is less than the average residual stock

when considering the full range of preferences (FB). In order to show that eFBi (φ(αi)) is

convex, we first note that from the proof of Corollary 1, φ′(αi) > 0 and φ′′(αi) < 0. Next,
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rearrange Equation 5 such that f ′(eFBi ) − φ(αi) = 0. The total differential is given by

f ′′(ei)dei − φ′(αi)dαi = 0. Thus, dei = φ′(αi)dαi

f ′′(ei) . Taking the total differential again gives

d2ei = −φ′(αi)dαif
′′′(ei)

(f ′′(ei))2 dei + φ′′(αi)dαi

f ′′(ei) dαi. Substituting dei from above gives:

d2ei
dα2

i

= −(φ′(αi))2f ′′′(ei)
(f ′′(ei))3 + φ′′(αi)

f ′′(ei)
> 0 (18)

and thus eFBi (φ(αi)) is convex, which proves the result.

F Proof of Proposition 3

Proof. We assume that all model parameters, contemporaneous residual stocks, and con-

temporaneous stocks are common knowledge to all patch owners. Similar to Kaffine and

Costello (2011), we consider a dynamic Cournot-Nash model in which owners simulta-

neously choose residual stocks in period t knowing that this procedure will be repeated

every year into the future. Following the classic paper by Levhari and Mirman (1980),

we solve for the subgame perfect Nash equilibrium by analytical backward induction on

the Bellman equation for each owner i.

We proceed by backward induction for each patch owner. At the end of time the value

function is zero: ViT+1 = 0 for all i. Thus the period T Bellman equation for owner i is

simply

ViT (xt) = max
eiT

αipi(xiT − eiT ) + (1− αi)keit (19)

whose interior solution is straightforward: e∗iT = 0, as αipi > (1−αi)k. In the final period,

each patch owner finds it optimal to harvest his entire stock, regardless of decisions made

by other patch owners. Note that the patch-i value function has an analytical solution:

ViT (xt) = αipixiT (20)
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which simplifies analysis in the penultimate period. Employing this result, the period

T − 1 patch i Bellman equation is:

ViT−1(xT−1) = max
eiT−1

αipi(xiT−1 − eiT−1) + (1− αi)keiT−1 + δαipixiT

= max
eiT−1

αipi(xiT−1 − eiT−1) + (1− αi)keiT−1 + δαipi
∑
j

fj(ejT−1)Dji(21)

Taking ejT−1 as given (for j 6= i), the first order condition for owner i implies

f ′i(eiT−1) = 1
δ

[
αipi − k(1− αi)

αipiDii

]
(22)

Notice that this best response function for owner i is independent of both other owners’

choices (ejT−1) and of the state variable (xT−1). In other words, period T − 1 decisions

can be written as a set of pre-determined numbers, e∗1T−1, e∗2T−1, ..., that are independent

of decisions made prior to period T − 1.

This pattern turns out to hold in all preceding periods, and following Kaffine and

Costello (2011) it is the case that the solution in all previous time periods is equal to

Equation 22. Because the optimal choice of eit is independent of both ejt (for j 6= i) and

of xt, this is both an open loop and a feedback control rule.

What happens if owner l deviates, so elt is given by some value ẽlt where f ′l (ẽlt) 6=

1
δ

[
αlpl−k(1−αl)

αlplDll

]
? There may be two effects on owner i’s choices. First, it may affect his

period t choices. Second, because future stock depends on owner l’s period t choice, it may

affect owner i choices in periods t+1, t+2, ... We showed above that eit was independent

of period t choices by all other patch owners, so we can rule out contemporaneous effects

on patch owner i. But we also showed that in any period t < T , the optimal choice for

owner i was independent of the state xt, which is the only conduit through which ẽlt

affects owner i into the future. Thus, the deviation by owner l has no effect on owner

i’s future choices. Thus, under the assumptions of this model: (1) patch owner i’s best
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response in period t is independent of period t choices by other patch owners and (2)

patch owner i’s optimal choice of residual stock in period t+ 1 is independent of choices

made by any owner prior to period t.

With the time and patch independence established, we now return to the Dynamic

Programming Equation for patch i under decentralized management:

Vit(xt) = max
eit

αipi(xit − eit) + (1− αi)keit + δVit+1(xt+1) (23)

with first-order condition for patch i of:

−αipi + (1− αi)k + δ
N∑
j=1

∂Vit+1(xt+1)
∂xjt+1

∂xjt+1

∂eit
= 0. (24)

By the above, the best response function for any given patch owner is independent of

other patch decisions. As such, the first-order conditions can be expressed as:

−αipi + (1− αi)k + δαipif
′
i(eit)Dii = 0 ∀i. (25)

Rearranging yields the residual stock rule in Proposition 3.

G Proof of Corollary 3

Proof. The proof for part (a) follows from the comparison of Equations 5 and 7. Setting

Dij = 0,∀j 6= i in Equation 5, the right-hand side of Equation 5 is identical to the right-

hand side of Equation 7, and residual stock in patch i under DM is equivalent to FB. To

prove necessity, suppose Dij > 0 for some j 6= i. Then the two expressions differ (the

numerators are equivalent, but denominators differ).

The proof for part (b) also follows from the comparison of Equations 5 and 7. By

Corollary 1, dei

dDij
> 0, and thus DM (equivalent to selecting ei as if Dij = 0) leads to

strictly less residual stock than FB.
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The proof for part (c) follows from the fact that as long as any patch k has Dkl > 0

for k 6= l, residual stock under DM in that patch will be strictly less than FB, and thus

global residual stock under DM will be strictly less than FB.

H Proof of Proposition 4

Proof. The proof for part (a) follows from Corollaries 2c and 3a. The proof for part (b)

follows from Corollaries 2a and 3b.

I Proof of Proposition 5

Proof. Define εi = αi− ᾱ as the measure of preference heterogeneity for patch i. For part

(a), because aggregate welfare over space and time is a continuous function of continuous

functions of Dij, aggregate welfare is continuous in Dij. By Proposition 4, for any level of

preference heterogeneity (εi > 0 for some i), welfare under DM is equivalent to FB when

Dij = 0,∀i 6= j, and both strictly dominate CP. BecauseDM � CP whenDij = 0,∀i 6= j,

then by continuity, within a local neighborhood there exists a strictly positive level of

out-dispersal Dij > 0 for some i 6= j where DM � CP .

For part (b), because aggregate welfare over space and time is a continuous function

of continuous functions of α, total welfare is continuous in α and thus ε. By Proposition

4, for any level of out-dispersal Dij > 0 for some i 6= j, welfare under CP is equivalent to

FB when εi = 0, ∀i, and both strictly dominate DM. Because CP � DM when εi = 0,∀i,

then by continuity, within a local neighborhood there exists a strictly positive level of

preference heterogeneity (εi > 0 for some i) where CP � DM .
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J Proof of Proposition 6

Proof. With the change to the utility function in Equation 8, the Dynamic Programming

Equations under FB, CP, DM are now respectively:

Vt(xt) = max
et

N∑
i=1

αipi(xit − eit) + (1− αi)
N∑
j=1

kejt

+ δVt+1(xt+1) (26)

Vt(xt) = max
et

N∑
i=1

ᾱpi(xit − eit) + (1− ᾱ)
N∑
j=1

kejt

+ δVt+1(xt+1)

Vit(xt) = max
eit

αipi(xit − eit) + (1− αi)
N∑
j=1

kejt

+ δVit+1(xt+1).

Following the procedure in the proofs to Propositions 1, 2, and 3 yields the optimal

residual stock rules in Proposition 6.

K Proof of Corollary 4

Proof. For part (a), compare the residual stock rules for DM and FB in Proposition 6

with the residual stock rules in Propositions 1 and 3. Note that DM does not change

her residual stock when adopting global preferences, so eDMi = êDMi . Examining the

numerator of the optimal residual stock for FB reveals that optimal residual stock always

increases under global preferences, so eFBi < êFBi . By Corollary 3b, eDMi < eFBi . Putting

these statements together yields: êDMi = eDMi < eFBi < êFBi , which establishes the result.

For part (b), we proceed with a proof by example. We invoke Condition 1, and assume

δ = 1, and fi(ei) is quadratic, so f ′i(ei) = Ai −Biei. We then compare the residual stock

rules for CP and FB in Proposition 6 with those in Propositions 1 and 2. Evaluating the

44



residual stock for patch i, these rules become:

f ′i(eFBi ) = αip− k(1− αi)
Qp(Nᾱ− αi) +Dpαi

≡ φFBi (27)

f ′i(êFBi ) = αip−Nk(1− ᾱ)
Qp(Nᾱ− αi) +Dpαi

≡ φ̂FBi (28)

f ′i(eCPi ) = ᾱp− k(1− ᾱ)
Qp(Nᾱ− ᾱ) +Dpᾱ

≡ φCPi (29)

f ′i(êCPi ) = ᾱp−Nk(1− ᾱ)
Qp(Nᾱ− ᾱ) +Dpᾱ

≡ φ̂CPi (30)

Thus, ei = Ai−φi

Bi
for the φ’s defined above. Consider a patch i for which αi < ᾱ,

which implies that eCPi < eFBi and êCPi < êFBi .23 Define ∆i as the difference in the

difference in escapements under FB and CP under global versus local preferences, such

that ∆i = (êFBi − êCPi )− (eFBi − eCPi ). Both terms in parentheses are positive, so ∆i > 0

implies the wedge between escapements is larger under global preferences, while ∆i < 0

implies the wedge is smaller under global preferences. After some algebraic simplification,

∆i = pk(αi − ᾱ)((N − 1)(Q−D) +DNᾱ)
B(Qp(Nᾱ− αi) +Dpαi)(Qp(Nᾱ− ᾱ) +Dpᾱ) (31)

The denominator is unambiguously positive, so the sign hinges on the numerator. The

first term in parenthesis (αi− ᾱ) is negative given the assumption αi < ᾱ. This negative

term is multiplied by the second term in parenthesis ((N−1)(Q−D)+DNᾱ), which can

be positive or negative. For example, if Q = D, then this term is positive and ∆i < 0,

while if Q = 0 and ᾱ < N−1
N

, then this term is negative and ∆i > 0. Thus, ∆i ≶ 0, and

central planning residual stock in patch i may be closer or farther from first-best.

23That eCP
i < eF B

i follows from Corollary 2b. That êCP
i < êF B

i can be confirmed by subtracting

Equation 30 from 28 and noting that non-negativity of the numerator of Equation 30 requires p ≥

Nk(1− ᾱ)/ᾱ.
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