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Abstract: This paper provides a basic example of the use of network formation games (NFGs) as a formal 
modeling tool inside the institutional analysis and development (IAD) framework. Network formation games 
are a relatively recent research area within the broader study of networks and are able to maintain the 
mathematical integrity of standard strategic game-theoretic models while making the structure less linear and 
removing as many restrictions as possible.  

The impetus behind using network formation games in the IAD framework is their ability to readily scale 
up into supernetworks, in which the nodes are a particular network formation, and the arcs may be Markov 
chains, dictating transitions between networks. This supernetwork can then act as a node in a super-
supernetwork, etc. This is highly useful, since the IAD framework is interested in multi-level analysis. 

This article addresses a simple public bad game: there are three players, each with 1 bag of garbage, and 
the government disposal/recycling official. The players decide whether to pass their garbage to one of their 
neighbors at no cost, or to send it to the disposal/recycling center for a diminishing cost per bag. In the base 
game, there is no side payments between individuals and the players act unilaterally, thus the results are either 
socially suboptimal or are borne by one or two of the agents. At the collective choice level, players can vote 
whether they would prefer side payments or to maintain the status quo. Finally, the analysis considers the 
constitutional level, where the voting procedures are identified (unilateral, majority, or supermajority). 

I find the greatest improvement to social welfare results from a coalition assigning a Pigouvian tax to 
create side-payments between players. Changing the voting from unilateral to majoritarian to super 
majoritarian generally better distributes the cost of littering, but only weakly lowers the level of trash. 
However, more important than the results, this model demonstrates a promising future connection between 
network formation games and the IAD framework.  
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I. Introduction 

Externalities are the bane of markets. An externality exists when the costs or benefits of an 
action are not completely born by the initiating actor and pass on to others in society who did not 
choose the original action. In general, their presence implies that the Fundamental Welfare theorems 
do not hold and that prices do not signal enough information to either consumers or producers. 
Efficiency or Pareto optimality are not present in the market, causing market failure. When an 
institution such as a market fails, actors turn to other institutions, such as the state, the commons, or 
private clubs to provide the appropriate level of a good. Thus, the study of externalities is entwined 
with the study of institutions. 

The study of institutional interaction dates back to Plato’s The Republic. Throughout history, 
institutions have been studied as tools for wielding power over other individuals, to symbolic and 
semi-religious structures that culturally bound society. The approach to institutions in this paper 
reflects the work done in New Institutional Economics (Coase 1937, Williamson 1975) and in the 
Institutional Analysis and Development framework literature (Ostrom 2007). Specifically, 
institutions are treated as the rules of the game (North 1991), which affect actors from multiple 
levels.  

 This paper studies how changing network formation rules affect the outcomes for the agents 
and the environment as a whole. Specifically, in a voting situation, can giving government agents a 
vote of their own alter outcomes, and does changing the number of votes required to take an action 
reduce the level of the externality? Given the assumptions of the model, the environment is only 
mildly better off giving the government agent a vote. The major benefit the government can offer is 
a Pigouvian tax that creates side-payments to lower trash levels. Changing the voting from unilateral 
to majoritarian to super majoritarian generally better distributes the cost of littering, but only weakly 
lowers the level of trash in the environment. More important than these standard results, the model 
presented in this paper demonstrates the promising future connection between network formation 
games and the IAD framework. 

The paper proceeds as follows: Section II presents a brief overview of the IAD framework. 
Section III reviews some of the important literature in network formation games, what networks 
contribute to the broader game theoretic literature, and why network formation games represent a 
simple way of applying the IAD framework to theoretical questions. Section IV delves into the 
example: a trash and recycling game. Section V provides some conclusions and extensions for 
further research. 

II. The Framework: Institutional Analysis and Development 

The Institutional Analysis and Development (IAD) framework has been in development over 
the years at the Ostrom Workshop in Political Theory and Policy Analysis at Indiana University.  

This section further discusses these four characteristics of the IAD framework inside an ‘action 
situation’. An action situation is an analytical construct that allows researchers to focus on the 
immediate structures, which affect decision making and thus outcomes in a particular scenario. 
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Action situations are similar to a game in game theory.2 What follows is simply a ‘quick and dirty’ 
paraphrase of thirty years’ worth of work. 

Individuals are the basic unit of analysis in the IAD framework. They are both the actors and 
those upon whom actions are taken. Individuals are generally assumed to have at least an ordinal 
preference ordering, some basic understanding of the consequence of their actions, and limited 
uncertainty about the actions of those around them. Those using the IAD framework take Herbert 
Simon’s notion of bounded rationality seriously, where actors do not have complete and perfect 
information about the present situation and the payoffs to their actions (Simon 1955). However, the 
framework does assume that an individual acts rationally based off the information they do have at 
their disposal. 

As mentioned above, individuals act based on their preferences over the incentives provided in a 
given situation. These incentives can take many forms, ranging from personal monetary to culturally 
appropriate to what is best for future generations of their family or clan. One can see that being 
rationally self-interested still applies to these individuals, as long as one dismisses the notion that 
being self-seeking can be quantified as often occurs in economic and political game theory. Inside an 
action situation, outside conditions, such as the physical environment, history, the community, and 
the institutional environment, determine the incentives facing the actors. 

Institutions are the rules governing the actions of individuals in all situations. They are created 
by individuals seeking to solve collective action problems by either dictating (i.e. ‘must’ or ‘must not’ 
rules) or promoting (‘may’ rules) some set of actions.3 IAD researchers are interested in de facto rules 
as opposed to de jure rules. Another attribute of institutions is that they exist at multiple levels. The 
IAD framework identifies four levels of institutions: operational, collective-choice, constitutional, 
meta-constitutional. Each successive institutional level informs the prior. In the US, the meta-
constitutional level is the state itself, the constitutional level would be the check and balances and 
design for the government as written in the constitution, the collective-choice level would be the 
government and laws it passes, and the operational level is the interaction between individuals and 
government agencies on a regular basis. Seeing as most of these levels are made up of individuals, 
actors at given institutional level can affect change at the deeper institutional level, though these 
changes are more costly and time consuming to change. 

The IAD framework results from a unique form of inquiry. It stems from the belief that no 
method or practice, no matter how robust, is a panacea. Therefore, associates of the Workshop are 
interdisciplinary in nature with a multitude of theories and methods for understanding institutions 
(or the world in general). In this vein, it became important to attempt to create uniform terminology 

                                                 

2 For a more in-depth study and visualizations of the frameworks setup, see Ostrom, E. 2005. Understanding Institutional 
Diversity. Princeton: Princeton University Press, ____. 2007. "Institutional Rational Choice: An Assessment of the 
Institutional Analysis and Development Framework," P. A. Sabatier, Theories of the Policy Process. Boulder, CO: Westview 
Press, 21-64, McGinnis, M. D. 2011. "An Introduction to Iad and the Language of the Ostrom Workshop: A Simple 
Guide to a Complex Framework." Policy Studies Journal, 39(1), 169-183. 
3 This contrasts with culturalist, Marxist and several other views of institutions as myths and ceremonies, elites’ tool of 
repression, and a myriad of other functions. 
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for the study of institutions. Hence, frameworks, theories, and models are three distinct tools. 
Frameworks are nested sets of components that can describe human behavior, but do not contain or 
imply causality. Theories are approaches using frameworks, which begin to impose causal 
relationships between components in a framework. Models are explicit in the relationships between 
components which results in testable hypotheses. This paper presents a formal analytical model 
from a network game theoretical approach from within the IAD framework. The next section 
discusses the theory, and then Section IV builds the model.  

It is important to note that the model presented here is only a baseline for explaining behavior in 
the real world. The IAD approach to inquiry demands that this merely be a starting place for 
studying phenomena. Consequently, much of the Workshop’s inquiry has been in to the real world 
study of the commons, which Garrett Hardin (1968) theorized as a tragedy. However, Workshop 
associates have taken his theory to the real world and show that it is incomplete; the assumptions 
underlying the tragedy of the commons do not hold but in a small case of real world situations, and 
this form of inquiry has led to the development of the socio-ecological systems approach to the 
commons which attempts to identify both broad and narrow categories that help determine the 
drama of the commons (Ostrom 2009). 

III. The Theory: Network Formation Games 

A network can be a form of organization, a means of relaying people (e.g. trains, planes, and 
automobiles) or information (e.g. the internet), or a policy tool used in New Public Management 
(Agranoff and McGuire 2001). Networks can be an analytical tool as well. Researchers have used a 
combination of networks and complex systems analysis to study the possible spread of a pandemic 
across the globe.4 Various social scientists and policy analysts have adopted the term as a modifier 
to, or replacement for the term social capital. In that case, networks provide a residual explanation 
for unexplained phenomena in a social theory.5 Considering two basic components, nodes and arcs, 
compose all networks, an intelligent person could find networks to be omnipresent. 

While computer scientists, engineers, political scientists, public administration analysts, 
sociologists, and statisticians have been working formally with network theory since the early 1960s, 
economists have shown up late to the game. The first truly economic analysis of was conducted by 
Roger Myerson (1977) where he looked at the relationships between graphs and cooperative game 
theory. Prior to this point, most formal network theory focused on deterministic models, particularly 
those in complex systems analysis. In his paper, one can see the beginning of what economists could 
contribute to network theory, namely the strategic formation of networks by rational agents.  

Network formation games are a relatively recent research area within the broader study of 
networks. Two groundbreaking works in the field were Jackson and Wolinsky (1996) and Bala and 

                                                 

4 Much of this research has occurred in the Center for Complex Networks and Systems Research at Indiana University. 
See http://cnets.indiana.edu for other topics the center is currently addressing. 
5 An undercurrent in some of the less academic literature leaves the impression that network theory can be a mindset or 
worldview, and this view is often associated with support for democracy and democratic ideals. 
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Goyal (2000). These papers are interested in seeing how, given a particular set of rules, agents 
strategically form links between each other. Between the two papers, it is easy to note that different 
formation rules result in different types of networks forming. These two papers accelerate the trend 
of working with network formation games in economics. Recent work by Page and Wooders 
(2007b) has moved economists from strictly studying homogeneous linking networks, where the 
arcs are non-directional and all the same type, to studying heterogeneous directed networks, where 
the arcs have a specific direction and may be of multiple types and intensities.  

The goal behind network formation games is to take the vast knowledge of strategic network 
games from standard game theoretical literature and (a) attempt to make the structure less linear (b) 
and remove as many assumptions as possible while (c) maintaining the mathematical integrity of the 
game theoretic models. As Section IV demonstrates, the degree of complexity in relationships is 
maintained from standard game theory while the degree of complexity in the mathematics is not. 
Furthermore, network formation games see equilibrium as only one possible outcome of a game and 
instead focus on the dynamics of stability for multiple equilibria (Page et al. 2005). Finally, all of 
these properties lead to rigorous modeling that can be quickly comprehended visually via graphs and 
tables. 

Several factors contribute to the beneficial blending of the IAD framework and Network 
Formation Games. First, as mentioned in the previous paragraph, network formation games can 
maintain some of the complexity of an action situation while still allowing the researcher to clearly 
analyze the components and dynamics. Second, network formation games do not presuppose strict 
rationality; a thin version is acceptable. In fact, network formation games could model bounded 
rationality and learning as types of arcs could change between different levels in a network (e.g. A 
student knows what the persons next to her are going to do, but she only has a vague sense of what 
the remaining individuals in the room plan to do). Third and most importantly, network formation 
games have the ability to readily scale up into supernetworks, in which the nodes are a particular 
network formation, and the arcs may be Markov chains or in the case of the game in this paper, 
strategic network rules, dictating transitions between networks. This supernetwork can then act as 
one node in a super- supernetwork, etc. This is highly useful, since the IAD framework is interested 
in multi-level analysis. It is hypothetically possible to start with a network of an individual weighing 
the probabilities of certain states of behavior, scaling it up to an operational situation where that 
individual interacts with others in operational situations, and continuing to scale up to the meta-
constitutional level. 

The remainder of this paper attempts to demonstrate these strengths of network formation 
games operating under the auspices of the IAD framework through a basic example.6 The example 
is an extension of the trash game first posed in Shapley and Shubik (1969). They showed that given 
an externality, the bag of garbage one throws into a neighbor’s yard, and more than two players, 
there is no core to the game and hence no equilibrium. The game has been recently re-analyzed in 

                                                 

6 A good example of network formation games modeling agent behavior with club goods is Page, J., Frank H. and 
Wooders, M. H. 2007a. "Club Networks with Multiple  Memberships and Noncooperative Stability," Conference in Honor 
of Ehud Kalai.  
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networks literature and shown that there are both farsightedly and Nash stable sets in the network 
(Page et al. 2002). Here, the analysis is extended to include a government agent in charge of 
recycling. In addition, agents have voting options and strategic behavior at the operational, 
collective-choice, and constitutional levels. 

IV. The Game: Trash & Recycling Amongst Three Players 

The basic action situation proceeds as follows: on a small cul-de-sac, three neighbors must figure 
out what to do with their trash. Each neighbor has three options: (1) he can take his trash to the 
recycling official in town, who charges a recycling fee; (2) he can dump his trash in one of his 
neighbor’s yards, which is costless to himself; or (3) he can figure out his own way of disposing of 
the garbage, which is costly to himself, but generally less costly than taking the garbage to the 
recycling official. The neighbors do not initially know what the other neighbors are going to do, but 
they do know that they face the same cost structure. 

A. Primitives 
Network formation games rely on four primitives to populate the model: the feasible set of 

networks made up of arcs and nodes, players’ preferences, the rules of network formation, and a 
dominance relation over feasible networks. The primitives offered here are specific to this game, 
which is a heterogeneous directed network; for an abstract approach, see Page and Wooders 
(2007b). 

1. Feasible Networks 
As mentioned above, the set of all feasible networks is composed of all arcs A , with a typical 

element defined as j , and all nodes N , with a typical element defined as i .  

Definition 1 (Heterogeneous Direct Network (Page, Wooders and Kamat 2005)) 

A heterogeneous directed network,G , is a subset of  ( )A N N . Given any   ( )G A N N , each 

ordered pair  ( ,( , ))j i i G  consisting of an arc type and an arc is called a labeled arc in G . The collection of all 

labeled directed networks is denoted by  ( ( ))P A N N . 

The ordered pair ( , )j i i can be read as an arc of type j proceeding from i to i . In this paper, 

 1 2 3{ , , , }RN i i i i and     1 2 3 1 2 3{ , , , , , , }RA j j j j j j j which will be ascribed qualities later. Thus, 

1 1 1 2 12 3 3 11{ ( , ), ( , ), ( , )}G j i i j i i j i i is an example of a network in this action situation; Figure 1 depicts 

the heterogeneous directed network G1. Note that loops are a legitimate type of arc and that a loop is 
not equivalent to not having any arcs at all. 

FIGURE 1: HETEROGENEOUS DIRECTED NETWORK 1G  
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The feasible network of the action situationG is the set of all possibleG . See Table 1 for the 
feasible setG of the game. 

2. Preferences 
Letd denote the set of players with typical element denoted by p . Note that in this action 

situation, the set of playersd who can create arcs is not the same as the set of nodes N . Players can 
have either strong or weak preferences.  

Definition 2: (Strong and Weak Preferences (Page and Wooders 2007b)) 

For each player p d let d be an irreflexive binary relation on G  and write  dG G  if player p d strongly 

prefers network G G to network G G . For weak preferences, for each player p d let d be a binary relation 

on G  and write  pG G  if player p d either strongly prefers network G G to network G G or is indifferent 

between G and G . This latter case is weak preferences. 

Similarly, players can form coalitions that have weak preferences, where at least one player 
prefers G toG and the others are indifferent. 

 In this example, the preferences are formed based on the real-valued network payoff 
function, ·)( }{ p p dv . Given this payoff function, player p prefers network G toG if ( () )p pv G v G

and weakly prefers network G toG if ( () )p pv G v G . Again, players can form coalitions that would 

have both strong and weak preferences based on ·)(pv .7 

3. Network Rules 
A major element of this example is the changing of network formation rules to optimize 

outcomes, thus only the base rule is defined here as a slight modification of Bala and Goyal (2000)’s 
non-cooperative or unilateral-unilateral rules: (a) arc addition is unilateral and is carried out by only 
the initiator, player p ; also, (b) arc subtraction from player p to p is an unilateral action of player p . 

Thus, player p can change networkG to network G without regard to player p ’s preferences. Later, 

voting rules will be implement that will require the formation of coalitions. The ability to move from 

                                                 

7 Abstractly, one can view each network G in feasible setG as a node in a larger network, thus representing coalitional 
preferences as a heterogeneous directed network. 
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network to network is called an effectiveness relation,S  where S is a coalition of players. Thus, if

SG G , under the rules of network formation, the coalition can change networkG to G by adding 

or subtracting arcs. In this example, all players’ or coalitions’ private decision-making occurs prior to 
receiving the payoffs, which occurs once the network is formed.  

4. Stability 
Definition 3: Stability 

(a) (Nash Stable Networks (Page and Wooders 2007b)) 
A network is Nash stable if, whenever an individual player has the power to change the network to 

another network, the player will have no incentive to do so. 

(b) ((Farsightedly Stable Networks (Page, Wooders and Kamat 2005)) 
A network is farsightedly stable if no agent or coalition of agents is willing to alter the network (via the 

addition, subtraction, or replacement of arcs) for fear that such an alteration might induce further network 
alterations by other agents or coalitions that in the end leave the initially deviating agent or coalition no better 
off - and possibly worse off. 

Here, stability introduces an alternative to equilibrium. In network formation games, equilibrium 
is a special case of stable sets, specifically when the stable set is of size 1. Instead, stable sets can also 
consist of circuits, where no networkG dominates all other G G .8 

While the recycling official Ri is not considered a player in the sense that she cannot form arcs, 

she still has preferences and affects the real-valued payoffs of the players. Ri preferences can be 

ranking, from highest to lowest, for players to give her their recycling, to dispose of their waste 
themselves, and lastly to give their trash to a neighbor. The recycling official also experiences 
economies of scale in recycling. Thus, the first bag of garbage received is expensive to process, but 
all subsequent bags are cheap. 

The real-valued payoffs are as follows: each bag of garbage a player ends up with costs 2 utils. It 
costs 0 to give the bag to a neighbor; to give the garbage to the recycling official costs 3 utils for the 
first bag and each subsequent bag costs 1. 

B. Simultaneous Gameplay 
In this scenario, players decide and take action at the same time; in addition, because of the 

simultaneity of play, the recycling official is able to evenly distribute the cost of recycling among all 
players who chose to recycle. 

1. Operational Level 
Table 1 has all feasible networks of the game and Table 2 has the feasible payoffs. It is important 

to note that it is more costly, but individually and socially, for only one player to go to the recycling 

                                                 

8 For more on the existence and non-emptiness of a stable core/network, see Dutta, B. and Mutuswami, S. 1997. 
"Stable Networks." Journal of Economic Theory, 76(2), 322-344. and Chwe, M. 2000. "Communication and Coordination in 
Social Networks." Review of Economic Studies, 67(1), 1-16. 
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official. Looking at the unilateral rules for farsighted stability in Table 3 (illustrated in Figure 2), 
shows that in over half the cases, each player ends up with one bag of garbage. Of the remaining 
cases, only one results in the socially optimal solution, and this case can only be arrived at 
stochastically (i.e. players would have to start in that situation). Moreover, changing to Nash stability 
(Table 3 and Figure 3) eliminates the socially optimal case. Notice that payoffs were symmetric in 
the farsightedly stable case, but this does not necessarily hold in the Nash case. 

2. Collective-Choice Level 
At the collective-choice level of analysis, the players can decide whether the recycling official’s 

opinion should count towards the actions of the network. Obviously, having more people who can 
vote does not affect the strategies and outcomes in a non-cooperative game, thus players are 
indifferent between allowing Ri to vote or not vote, as demonstrated in Figure 4.  

Preempting the analysis on constitutional level change, allowing the recycling official to vote in a 
majoritarian or super majoritarian voting system can affect both farsightedly and Nash stable 
networks. In the majoritarian case, having four voters instead of three requires a coalition of size 
three to have an effectiveness relation on the supernetwork. However, this coalition size is already 
required for super majoritarian voting, thus players are indifferent over Ri voting or not voting. 

Figure 4 illustrates these results. Since there is at least one case where having Ri vote improves 

outcomes (Case 1 versus Case 2 in Tables 4 and 5) and in no cases does it reduce payoffs, if the type 
of voting is unknown, players will chose to have Ri vote. This holds for both Nash and farsighted 

stability. 

3. Constitutional Level 
At the constitutional level, players determine how decisions will be made at the lower 

institutional levels. Here, players choose between three voting types: unilateral, majoritarian, and 
super majoritarian. Unilateral voting is the baseline rules presented in the network rules section. 
Majoritarian voting requires a coalition of greater than fifty percent for an arc to be added or 
subtracted. Super majoritarian voting requires a coalition of greater than two-thirds for an arc to be 
added or subtracted. Moreover, the voting rules require the sending player to propose the potential 
arc and to be able to form a coalition that weakly prefers said arc. If the proposed arc fails to find a 
winning coalition, the sending player continues to propose prospective arcs until a winning coalition 
is found. 

 Tables 4 and 5 (illustrated in Figures 2 and 3) show the farsightedly and Nash stable sets, 
resp. As noted above, the stable networks in majoritarian voting alternate between Case 1 and Case 
2 (in Tables 4 and 5) based on collective-choice level decisions. Notice, however, that in super 
majoritarian scenarios, the social optimality is achieved for Nash stability, and is one of two 
possibilities in the case of farsighted stability (thus having a lower expected cost than Case 1). Thus, 
if the type of collective-choice level institution is unknown, players prefer super majoritarian to 
majoritarian to unilateral voting. See Figure 7 for an illustration of constitutional supernetwork 
movement. 
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C. Sequential Gameplay 
As a slightly different scenario, the game was changed to have sequential gameplay. Play starts 

with 1i choosing and forming an arc; 2i observes this action and chooses/forms his arc accordingly; 

3i observes both 1i and 2i ’s arcs and plays last. Payoffs are then allocated. Because actions take place 

sequentially, the recycling official cannot immediately make side-payments. 

1. Operational Level 
Table 1 has all feasible networks of the game and Table 6 has the feasible payoffs (note that 

payoffs are different from Part B). A similar process as backward induction in standard game theory 
determines the stable sets. Since 3i acts last, the other players take his payoffs into account; seeing 

that his optimal arc choices are 3 3 1( , )j i i or 3 3 2( , )j i i with cost of zero to 3i . For the sake of simplicity, 

assume that indifference between actions leads to alternating between choices evenly. Next, 2i

choices 2 2 1( , )j i i as it offers the lowest expected cost over all choices by 1i . Given these prior choices, 

1i minimizes his expected cost by choosing 1 1 3( , )j i i , which results in the set of networks 3 19[ , ]G G . 

Notice that the network set 9 25[ , ]G G off the same expected costs, thus being farsightedly stable, but 

1i has a better immediate deviation strategy, and thus this is not Nash stable. Figure 5 presents the 

stable sets. 

2. Collective-Choice Level 
This is where the action situation gets particularly interesting. Instead of the recycling official 

being able to vote, players can decide whether they want her to allocate side payments. Tables 7 and 
8 contain the stable networks and Table 9 contains the payoffs. With the introduction of an 
additional case, there also exists an additional case in Table 9. Here, the introduction of voting by Ri  

removes the last mover advantage from 3i in the cases of majoritarian and super majoritarian voting, 

so while the socially optimal is not reached, there is an equitable distribution of costs. The key to 
reaching the social optimum in this case is the official’s ability to distribute side payments, 
represented by cases 3 and 4. In case 3, because 3i can operate in the same manner as the baseline 

case, 1i and 2i have to make sure he has not costs; whereas in case 4, because of the ability of Ri to 

ensure equitable incomes, that threat point is removed and the players split the social savings of 
sending the trash to the recycling center. Figure 6 outlines the movements between collective-choice 
rules. In the unilateral case, there is a circuit between side-payments with no voting and side-
payments with voting, since 3i can always move away from having to pay any costs. In the 

majoritarian and super majoritarian cases, side-payments with voting becomes the stable point. 

3. Constitutional Level 
Supernetwork characteristics remain the same as in the simultaneous case, thus Figure 7 applies 

to this case as well. However, it is important to note that 3i is worse off in both the majoritarian and 

the super majoritarian case. Either player 1i or 2i moving from U to the M or SM nodes drives the 
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dynamics. Once at either of these nodes, 3i no longer has an effective relationship over the 

supernetwork. 

V. Implications & Extensions 

The implications of the model are straightforward and well-established in other theoretical 
literature. The more players are involved in the decision-making process, the better the networks 
perform socially. This merely reflects the internalization of the externality to the group as a whole. 
In addition, giving the government a voice does not necessarily improve social outcomes, but it does 
force a more equitable voting process and thus more equitable payoffs. Finally, the ability to make 
side-payments can result in a socially optimal outcome, without changing any of the other structures 
of the game. Side-payments in this game are essentially the equivalent of a Pigouvian tax, where the 
government subsidizes good behavior (turning in the trash to the recycling agent), and taxes poor 
behavior (passing the trash to a neighbor). 

The main result of this paper is its ability to illustrate how network formation games dovetail 
nicely with the IAD framework, particularly the network attribute of supernetworks with the IAD 
attribute of nested levels of analysis. This fact is illustrated in Figure 8, which essentially places 
Figure 7 under a microscope, replacing the M node with the majoritarian case from the sequential 
example, then replacing ‘allowing the recycling official to both vote and make side-payments’ with 
the stable set of networks. In the terminology of the IAD framework, constitutional level rules affect 
a larger array of collective-choice institutions and rules, which affect the day-to-day handling of 
externalities. 

The number of extensions are tremendous. Simple extensions would be adding additional 
players, changing the voting rules to represent that of the US Congress, or changing the technology 
for recycling. An extension that is more dramatic would be to include players indirectly linked to the 
initial set of players and whose knowledge of the initial players’ actions or payoffs is incomplete. The 
goal of this article was to create an initial blueprint upon which richer research can be build. 
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j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) G1 G5 G9 G13

j1(i1,i2) G2 G6 G10 G14

j1(i1,i3) G3 G7 G11 G15

j1(i1,iR) G4 G8 G12 G16

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) G17 G21 G25 G29

j1(i1,i2) G18 G22 G26 G30

j1(i1,i3) G19 G23 G27 G31

j1(i1,iR) G20 G24 G28 G32

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) G33 G37 G41 G45

j1(i1,i2) G34 G38 G42 G46

j1(i1,i3) G35 G39 G43 G47

j1(i1,iR) G36 G40 G44 G48

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) G49 G53 G57 G61

j1(i1,i2) G50 G54 G58 G62

j1(i1,i3) G51 G55 G59 G63

j1(i1,iR) G52 G56 G60 G64

j 3 (i 3 ,i 1 )

j 3 (i 3 ,i 2 )

j 3 (i 3 ,i 3 )

j 3 (i 3 ,i R )

Table 1: All Possible Garbage Game Networks
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j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-6,0,0) (-4,-2,0) (-4,0,-2) (-4,-3,0)

j1(i1,i2) (-4,-2,0) (-2,-4,0) (-2,-2,-2) (-2,-5,0)

j1(i1,i3) (-4,0,-2) (-2,-2,-2) (-2,0,-4) (-2,-3,-2)

j1(i1,iR) (-7,0,0) (-5,-2,0) (-5,0,-2) (-4,-2,0)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,-2,0) (-2,-4,0) (-2,-2,-2) (-2,-5,0)

j1(i1,i2) (-2,-4,0) (0,-6,0) (0,-4,-2) (0,-7,0)

j1(i1,i3) (-2,-2,-2) (0,-4,-2) (0,-2,-4) (0,-5,-2)

j1(i1,iR) (-5,-2,0) (-3,-4,0) (-3,-2,-2) (-2,-4,0)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,0,-2) (-2,-2,-2) (-2,0,-4) (-2,-3,-2)

j1(i1,i2) (-2,-2,-2) (0,-4,-2) (0,-2,-4) (0,-5,-2)

j1(i1,i3) (-2,0,-4) (0,-2,-4) (0,0,-6) (0,-3,-4)

j1(i1,iR) (-5,0,-2) (-3,-2,-2) (-3,0,-4) (-2,-2,-2)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,0,-3) (-2,-2,-3) (-2,0,-5) (-2,-2,-2)

j1(i1,i2) (-2,-2,-3) (0,-4,-3) (0,0,-7) (0,-4,-2)

j1(i1,i3) (-2,0,-5) (0,-2,-5) (0,0,-7) (0,-2,-4)

j1(i1,iR) (-4,0,-2) (-2,-2,-2) (-2,0,-4) (-5/3,-5/3,-5/3)

Table 2: All Possible Garbage Game Networks' Payoffs, Simultaneous

j 3 (i 3 ,i 1 )

j 3 (i 3 ,i 2 )

j 3 (i 3 ,i 3 )

j 3 (i 3 ,i R )
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i1 i2 i3 d

G7 v i1 (G7) = -2 v i2 (G7) = -2 v i3 (G7) = -2 v d (G7) = -6

G10 v i1 (G10) = -2 v i2 (G10) = -2 v i3 (G10) = -2 v d (G10) = -6

G19 v i1 (G19) = -2 v i2 (G19) = -2 v i3 (G19) = -2 v d (G19) = -6

G25 v i1 (G25) = -2 v i2 (G25) = -2 v i3 (G25) = -2 v d (G25) = -6

G34 v i1 (G34) = -2 v i2 (G34) = -2 v i3 (G34) = -2 v d (G34) = -6

G37 v i1 (G37) = -2 v i2 (G37) = -2 v i3 (G37) = -2 v d (G37) = -6

G48 v i1 (G48) = -2 v i2 (G48) = -2 v i3 (G48) = -2 v d (G48) = -6

G56 v i1 (G56) = -2 v i2 (G56) = -2 v i3 (G56) = -2 v d (G56) = -6

G61 v i1 (G61) = -2 v i2 (G61) = -2 v i3 (G61) = -2 v d (G61) = -6

G64 v i1 (G64) = -5/3 v i2 (G64) = -5/3 v i3 (G64) = -5/3 v d (G64) = -5

mean -59/30 -59/30 -59/30 -5.9

median -2 -2 -2 -6

mode -2 -2 -2 -6

i1 i2 i3 d

G37 v i1 (G37) = -2 v i2 (G37) = -2 v i3 (G37) = -2 v d (G37) = -6

G64 v i1 (G64) = -5/3 v i2 (G64) = -5/3 v i3 (G64) = -5/3 v d (G64) = -5

mean -11/6 -11/6 -11/6 -5.5

median -11/6 -11/6 -11/6 -5.5

Farsightedly Stable: Case 2

Farsightedly Stable: Case 1

Table 4: Farsightedly Stable Payoffs, Simultaneous
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i1 i2 i3 d

G2 v i1 (G2) = -4 v i2 (G2) = -2 v i3 (G2) = 0 v d (G2) = -6

G3 v i1 (G3) = -4 v i2 (G3) = 0 v i3 (G3) = -2 v d (G3) = -6

G10 v i1 (G10) = -2 v i2 (G10) = -2 v i3 (G10) = -2 v d (G10) = -6

G11 v i1 (G11) = 0 v i2 (G11) = -2 v i3 (G11) = -4 v d (G11) = -6

G18 v i1 (G18) = -2 v i2 (G18) = -4 v i3 (G18) = 0 v d (G18) = -6

G19 v i1 (G19) = -2 v i2 (G19) = -2 v i3 (G19) = -2 v d (G19) = -6

G26 v i1 (G26) = 0 v i2 (G26) = -4 v i3 (G26) = -2 v d (G26) = -6

G27 v i1 (G27) = 0 v i2 (G27) = -2 v i3 (G27) = -4 v d (G27) = -6

mean -7/4 -9/4 -2 -6

median -2 -2 -2 -6

mode {0,2} -2 -2 -6

i1 i2 i3 d

G64 v i1 (G64) = -5/3 v i2 (G64) = -5/3 v i3 (G64) = -5/3 v d (G64) = -5

Nash Stable: Case 1

Table 5: Nash Stable Payoffs, Simultaneous

Nash Stable: Case 2
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j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-6,0,0) (-4,-2,0) (-6,0,0) (-4,-3,0)

j1(i1,i2) (-6,0,0) (-2,-4,0) (-6,0,0) (-2,-4,0)

j1(i1,i3) (-6,0,0) (-4,-2,0) (-6,0,0) (-4,-3,0)

j1(i1,iR) (-7,0,0) (-5,-2,0) (-7,0,0) (-5,-1,0)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,-2,0) (-2,-4,0) (-2,-4,0) (-2,-5,0)

j1(i1,i2) (-4,-2,0) (0,-6,0) (0,-6,0) (0,-7,0)

j1(i1,i3) (-2,-4,-0) (0,-6,0) (0,-6,0) (0,-7,0)

j1(i1,iR) (-5,-2,0) (-3,-4,0) (-3,-4,0) (-3,-3,0)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,0,-2) (-2,-2,-2) (-2,0,-4) (-2,-3,-2)

j1(i1,i2) (-4,0,-2) (0,-4,-2) (0,0,-6) (0,-4,-2)

j1(i1,i3) (-2,0,-4) (0,-2,-4) (0,0,-6) (0,-3,-4)

j1(i1,iR) (-5,0,-2) (-3,-2,-2) (-3,0,-4) (-3,-1,-2)

j2(i2,i1) j2(i2,i2,) j2(i2,i3) j2(i2,iR)

j1(i1,i1) (-4,0,-3) (-2,-2,-3) (-2,0,-4) (-2,-3,-1)

j1(i1,i2) (-4,0,-3) (0,-4,-3) (0,0,-5) (0,-4,-1)

j1(i1,i3) (-2,0,-4) (0,-2,-4) (0,0,-5) (0,-3,-2)

j1(i1,iR) (-5,0,-1) (-3,-2,-1) (-3,0,-2) (-3,-1,-1)

j 3 (i 3 ,i 1 )

j 3 (i 3 ,i 2 )

j 3 (i 3 ,i 3 )

j 3 (i 3 ,i R )

Table 6: All Possible Garbage Game Networks' Payoffs, Sequential
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Recycler does not Vote Recycler Votes

Unilateral {[G3,G19],[G9,G25]} {[G3,G19],[G9,G25]}

Majority {[G3,G19],[G9,G25]} {G37}

Super Majority {G37} {G37}

Recycler does not Vote Recycler Votes

Unilateral {G58,G59,G60,G62,G63,G64} {G58,G59,G60,G62,G63,G64}

Majority {G58,G59,G60,G62,G63,G64} {G58,G59,G60,G62,G63,G64}*

Super Majority {G58,G59,G60,G62,G63,G64}* {G58,G59,G60,G62,G63,G64}*

Table 7: Farsightedly Stable Supernetworks, Sequential

Side Payments Not Permitted

Side Payments Permitted
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Recycler does not Vote Recycler Votes

Unilateral {[G3,G19]} {[G3,G19]}

Majority {[G3,G19]} {G37}

Super Majority {G37} {G37}

Recycler does not Vote Recycler Votes

Unilateral {G58,G59,G60,G62,G63,G64} {G58,G59,G60,G62,G63,G64}

Majority {G58,G59,G60,G62,G63,G64} {G58,G59,G60,G62,G63,G64}*

Super Majority {G58,G59,G60,G62,G63,G64}* {G58,G59,G60,G62,G63,G64}*

Side Payments Permitted

Table 8: Nash Stable Supernetworks, Sequential

Side Payments Not Permitted
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i1 i2 i3 d

[G3,G19] v i1 ([G3,G19]) = -4 v i2 ([G3,G19]) = -2 v i3 ([G7,G19]) = 0 v d ([G3,G19]) = -6

[G9,G25]* v i1 ([G9,G25]) = -4 v i1 ([G9,G25]) = -2 v i1 ([G9,G25]) = 0 v i1 ([G9,G25]) = -6

i1 i2 i3 d

G37 v i1 (G37) = -2 v i2 (G37) = -2 v i3 (G37) = -2 v d (G37) = -6

i1 i2 i3 d

G58 v i1 (G58) = -3.5 v i2 (G58) = -1.5 v i3 (G58) = 0 v d (G58) = -5

G59 v i1 (G59) = -3.5 v i2 (G59) = -1.5 v i3 (G59) = 0 v d (G59) = -5

G60 v i1 (G60) = -3.5 v i2 (G60) = -1.5 v i3 (G60) = 0 v d (G60) = -5

G62 v i1 (G62) = -3.5 v i2 (G62) = -1.5 v i3 (G62) = 0 v d (G62) = -5

G63 v i1 (G63) = -3.5 v i2 (G63) = -1.5 v i3 (G63) = 0 v d (G63) = -5

G64 v i1 (G64) = -3.5 v i2 (G64) = -1.5 v i3 (G64) = 0 v d (G64) = -5

i1 i2 i3 d

G58 v i1 (G58) = -5/3 v i2 (G58) = -5/3 v i3 (G58) = -5/3 v d (G58) = -5

G59 v i1 (G59) = -5/3 v i2 (G59) = -5/3 v i3 (G59) = -5/3 v d (G59) = -5

G60 v i1 (G60) = -5/3 v i2 (G60) = -5/3 v i3 (G60) = -5/3 v d (G60) = -5

G62 v i1 (G62) = -5/3 v i2 (G62) = -5/3 v i3 (G62) = -5/3 v d (G62) = -5

G63 v i1 (G63) = -5/3 v i2 (G63) = -5/3 v i3 (G63) = -5/3 v d (G63) = -5

G64 v i1 (G64) = -5/3 v i2 (G64) = -5/3 v i3 (G64) = -5/3 v d (G64) = -5

Table 9: Farsightedly and Nash Stable Payoffs, Sequential

Case 1

Case 2

Case 3

*This is only Farsightedly Stable, not Nash.

Case 4



  
Page 20 

 
  

FIGURE 2: FARSIGHTEDLY STABLE NETWORKS, SIMULTANEOUS 

Case 1 
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Case 2 

 

 

FIGURE 3: NASH STABLE NETWORKS, SIMULTANEOUS 

Case 1 

 



  
Page 22 

 
  

 

Case 2 

 

FIGURE 4: COLLECTIVE-CHOICE LEVEL SUPERNETWORKS, SIMULTANEOUS 
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Figure 5: Farsightedly and Nash Stable Networks, Sequential 

Case 1 

 

 

Note: Networks G9 and G25 are only farsightedly stable, not Nash stable. 

 

Case 2 
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Case 3 

 

 

Case 4 
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Figure 6: Collective-Choice Level Supernetworks, Sequential 

 

Figure 7: Constitutional Level Supernetworks 

 

Figure 8: The Nesting Property 
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