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Abstract

We model the structure and strategy of social interactions prevailing at any point in

time as a directed network and we address the following open question in the theory

of social and economic network formation: given the rules of network and coalition

formation, preferences of individuals over networks, strategic behavior of coalitions

in forming networks, and the trembles of nature, what network and coalitional dy-

namics are likely to emergence and persist. Our main contributions are to formulate

the problem of network and coalition formation as a dynamic, stochastic game and to

show that: (i) the game possesses a stationary Markov equilibrium (in network and

coalition formation strategies), (ii) together with the trembles of nature, this station-

ary equilibrium determines an equilibrium Markov process of network and coalition

formation, and (iii) this endogenous Markov process possesses a finite set of ergodic

measures, and generates a finite, disjoint collection of nonempty subsets of networks

and coalitions, each constituting a basin of attraction. Moreover, we extend to the

setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-

Wolinsky, 1996) and the path dominance core (Page-Wooders, 2009a). We show that

in order for any network-coalition pair to emerge and persist, it is necessary that the

pair reside in one of finitely many basins of attraction. The results we obtain here for

endogenous network dynamics and stochastic basins of attraction are the dynamic

analogs of earlier results on endogenous network formation and strategic basins of at-

traction in static, abstract games of network formation (Page and Wooders, 2009a),

and build on the seminal contributions of Jackson and Watts (2002), Konishi and

Ray (2003), and Dutta, Ghosal, and Ray (2005).

KEYWORDS: endogenous network dynamics, dynamic stochastic games of net-

work formation, stationary Markov correlated equilibrium, equilibriumMarkov process

of network formation, basins of attraction, Harris decomposition, ergodic probability

measures, dynamic path dominance core, dynamic pairwise stability.

JEL Classifications: A14, C71, C72



1 Introduction

In all social and economic interactions, individuals or coalitions choose not only with

whom to interact but how to interact, and over time both the structure (the “with

whom”) and the strategy (“the how”) of interactions change. Our objectives here are

to model the structure and strategy of interactions prevailing at any point in time as

a directed network and to shed new light on the co-evolution of network structure and

strategic behavior by addressing the following open question in the theory of social

and economic network formation: given rules of network formation, preferences of

individuals over networks, strategic behavior of coalitions in forming networks, and

trembles of nature, what network and coalitional dynamics are likely to emergence

and persist. Thus, we propose to study the emergence of endogenous network and

coalitional dynamics from strategic behavior and the randomness in nature.

Our main contributions are to formulate the problem of network formation as a

dynamic, stochastic game, and to show that: (i) this game possesses an equilibrium

in stationary Markov network and coalition formation strategies, (ii) together with

the trembles of nature, these equilibrium strategies determine an equilibrium Markov

process of network and coalition formation that respects the rules of network for-

mation and the preferences of individuals and (iii) this equilibrium Markov process

generates a finite, disjoint collection of nonempty subsets of networks and coalitions,

each constituting a basin of attraction, and possesses a finite, nonempty set of ergodic

measures.

In earlier work on the co-evolution of network structure and strategic behavior

using static abstract games of network formation, Page and Wooders (2009) have

shown that, given the rules of network formation and the preferences of individuals,

these games possess strategic basins of attraction and these contain all networks that

are likely to emerge and persist as the game unfolds. Moreover, they have shown that

when any one of these strategic basins contains only one network, then that network

(i.e., the single network contained in the singleton basin) is stable against all coali-

tional network deviation strategies - and thus the game has a nonempty path domi-

nance core. Finally, Page-Wooders (2009) have shown that depending on how we spe-

cialize the rules of network formation and the dominance relation over networks, any

network contained in the path dominance core is pairwise stable (Jackson-Wolinsky,

1996), strongly stable (Jackson-van den Nouweland, 2005), Nash (Bala-Goyal, 2000),

or consistent (Chwe, 1994).

We show here that there are many parallels between the static abstract game

formulation and the prior results of Page and Wooders for static games and the results

we obtain here for our Markov dynamic game formulation. This is suggested already

by the seminal paper by Jackson and Watts (2002) on the evolution of networks.

Jackson and Watts present to our knowledge the first theory of stochastic dynamic

network formation over a finite set of linking networks governed by a Markov chain

generated by the myopic strategic behavior of players (following the Jackson-Wolinsky

rules of network formation) and the trembles of nature. Their model builds on the

earlier, nonstochastic model of dynamic network formation due to Watts (2001) - as

far as we know, the first model of network dynamics (see also Skyrms and Pemantle,
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2000)). By considering a sequence of perturbed irreducible and aperiodic Markov

chains (i.e., each with a unique invariant measure) converging to the original Markov

chain, they show that any pairwise stable network is necessarily contained in the

support of an invariant measure - that is, in the support of a probability measure

that places all its support on sets of networks likely to form in the long run. We

show here that similar conclusions can be reached for directed networks with many

arc types governed by arbitrary network formation rules.

In a general Markov game setting, with farsighted players, what precisely does

it mean for a network to be pairwise stable - or stable in any sense? For example,

if the state space of networks is large, then the endogenous Markov process of net-

work formation is likely to have many invariant measures - and in fact many ergodic

probability measures (i.e., measures that place all their probability mass on a single

absorbing set). Which absorbing set contains networks stable in the sense of pairwise

stability, or strong stability, or Nash stability? These are some of the questions we

answer here in our study of endogenous network dynamics.

2 Primitives

2.1 The Space of Directed Networks

We begin by giving the formal definition of a directed network. Let N be a finite

set of nodes with typical element denoted by i and let A be a finite set of arcs with

typical element denoted by a. Arcs represent potential types of connections between

nodes, and depending on the application, nodes can represent economic agents or

economic objects such as markets or firms.

Definition 1 (Directed Networks)

Given node set N and arc set A, a directed network, G, is a nonempty subset of

A× (N ×N).
The collection of all directed networks is denoted by P (A× (N ×N)).

A directed network G ∈ P (A × (N ×N)) thus consists of a set of ordered pairs
of the form (a, (i, i

0
)) where a is an arc type or an arc label and (i, i0) is an ordered

pair of nodes. We shall refer to any pair (a, (i, i
0
)) ∈ G as a connection in network

G. Thus, a network G is a finite set of connections specifying how the nodes in N

are connected by the arcs in A. In a directed network order matters. In particular,

(a, (i, i
0
)) ∈ G means that nodes i and i0 are connected by a type a arc from node i

to node i
0
. Because the set of nodes and the set of arcs (or arc types) are finite, the

set of all possible directed networks P (A× (N ×N)) is also finite.
Note that under our definition of a directed network, loops are allowed - that is,

we allow an arc to go from a given node back to that given node.1 Finally, note

1By allowing loops we are able to represent a network having no connections between distinct

nodes as a network consisting entirely of loops at each node.
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that under our definition an arc can be used multiple times in a given network and

multiple arcs can go from one node to another. However, our definition does not

allow an arc a to go from a node i to a node i0 multiple times.
The following notation is useful in describing networks. Given directed network

G ∈ P (A× (N ×N)), let

G(a) :=
n
(i, i

0
) ∈ N ×N : (a, (i, i

0
)) ∈ G

o
,

G(i, i0) := {a ∈ A : (a, (i, i0)) ∈ G}

G+(i) :=
n
a ∈ A : (a, (i, i0)) ∈ G for some i0 ∈ N

o
,

and

G−(i0) :=
n
a ∈ A : (a, (i, i0)) ∈ G for some i ∈ N

o
.

Thus, in network G,

G(a) is the set of node pairs connected by arc a,
G(i, i0) is the set of arcs from node i to node i0,
G+(i) is the set of arcs leaving node i, and
G−(i0) is the set of arcs entering node i0.

If for some arc a ∈ A, G(a) is empty, then arc a is not used in network G. Also,
if for some node i ∈ N , G+(i) ∪G−(i) is empty, then node i is isolated.

In formulating our game of network and coalition formation, it will often be useful

to restrict attention to a particular feasible subset of networks.

Definition 2 (Feasible Networks)

Given finite node set N and finite arc set A, a feasible set of networks is a nonempty,

subset G of the collection of all directed networks P (A× (N ×N)).

We will assume throughout that

A-1 (finiteness of nodes and arcs) the set of nodes N and arcs A are finite and that

the feasible set of networks is given by a subset G of P (A× (N ×N)).

Examples 1: Feasible Networks

(1) Club Networks:

Consider a collection of networks where some nodes represent players while other

nodes represent clubs (or club locations) and where arc types represent the actions

players take as members of clubs. In particular, let D be a finite set of players with

typical element d, C be a finite set of club types (or club labels or club locations)

with typical element c, and A be a finite set of arcs representing actions potentially

available to all players with typical element a. For each player d and club c, let A(d, c)
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be the feasible set of actions that can be taken by player d in club c. We adopt the

convention that if A(d, c) = ∅, then player d cannot be a member of club c.
A club network G is a nonempty subset of A×(D×C) such that (i) for all players

d ∈ D, the section of G at d given by
G(d) := {(a, c) ∈ A× C : (a, (d, c)) ∈ G} (1)

is nonempty; and (ii) for all (a, (d, c)) ∈ G, a ∈ A(d, c). Let GK denote the collection
of all such club networks. Note that by letting the set of nodes be given by N = D∪C,
we have

GK ⊂ P (A× (N ×N)).
Also note that the condition G(d) 6= ∅ means that each player is a member of at least
one club - and possibly more (i.e., membership in at least one club is required and

multiple memberships are allowed).

An interesting special case of club networks is the collection of single membership

networks. We denote this collection by GK1. A single membership club network G is
a nonempty subset of A× (D ×C) such that (i) for all players d ∈ D, G(d) contains
one and only one element (i.e., |G(d)| = 1, where |G(d)| denotes the cardinality of
G(d)), and (ii) for all (a, (d, c)) ∈ G, a ∈ A(d, c).

Specializing further, let the set of arc types be given by A = {1}, where a = 1
denotes membership (i.e., (1, (d, c)) ∈ G means that player d is a member of club c

in network G), and suppose there are three players

D = {d1, d2, d3}
and two clubs

C = {c1, c2}.
Figure 1 depicts the single membership club network

G = {(1, (d1, c1)), (1, (d2, c1)), (1, (d3, c2))}.

d1

d2

c1

c2
d3

Figure 1: A Single Membership Club Network

(2) Marketing Networks:

Modifying example (2), suppose that the set of nodes N is given by N := F ∪M ,
where F is a set of firms and M is a set of markets. Also, suppose that the set of arc

types is given by a finite set of catalogs,

A := {C1, . . . , Cq}.
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Each catalog C ∈ A is a nonempty, closed subset of X × P , where X ⊂ Rl is a

closed bounded subset of product description vectors, P is a closed bounded interval

of prices, and (0, 0) ∈ X × P .
Suppose that the feasible set of networks is given by

GM := {G ⊆ A× (F ×M) : ∀(f,m), |G(f,m)| ≤ 1; ∀f , |G(f,m)| = 1 for some m} .

We call these networks, marketing networks. In marketing network G ∈ GM , a
connection (C, (f,m)) ∈ G means that firm f offers a catalog C of products and

prices in market m. Note that feasibility requires that each firm offers a catalog

(and only one catalog) in at least one market - but this catalog can be the “no

contracting” catalog C0 = {(0, 0)}. In this way, firms are allowed to abstain from
active participation.

Letting

F = {f1, f2, f3, f4, f5}
be the set of firms and

M = {m1,m2}
be the set of markets, Figure 2 depicts a marketing network.

m2

a2

a1

a3

a1

a1

G0

a3

a3

C12

m1

f2

f1

f3

f4

f5

C42

C52

C11 C21

C31

C41

Figure 2: A Marketing Network

In this marketing network the connection (C12,(f1,m2)), with arc type C12 ∈ A,
indicates that firm f1 offers catalog C12 in market m2.

2.2 Players and Coalitions

We will make a distinction between the set of players (or decision makers) and the

set of nodes. In particular, we will not assume that the set of players and the set of

nodes are necessarily one and the same. As in the marketing network example (2)

above, some nodes are firms (i.e., players or decision makers) while other nodes are

markets (i.e., are not players and are passive).
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Because changing one network to another network very often involves groups of

players acting in concert, coalitions will play an important role in our model. Let

D denote the set of players (a set not necessarily equal to N the set of nodes) with

typical element denoted by d and let P (D) denote the collection of all player coalitions
(i.e., nonempty subsets of D) with typical element denoted by S. We will assume

that the set of players D has cardinality m (i.e., |D| = m). Depending on the rules of
network formation, it will often be useful to restrict attention to a particular feasible

subset of coalitions.

Definition 3 (Feasible Coalitions)

Given player set D, a feasible set of coalitions is a nonempty subset F of the

collection of all coalitions P (D).

We will assume throughout that

A-2 (finiteness of players) the set of players D is finite and that the feasible set of

coalitions is given by a subset F of P (D).

Examples 2: Feasible Coalitions

(1) Suppose that the feasible set of coalitions is given by

F2 = {S ∈ P (D) : |S| ≤ 2} .
Thus, all feasible coalitions consist of at most two players. The set F2 is, for exam-
ple, the feasible set for the Jackson-Wolinsky rules of network formation (Jackson-

Wolinsky (1996)). If the set of nodes and the set of players are one in the same, then

under the Jackson-Wolinsky rules, a connection can be removed from a network if and

only if one or both players involved in the connection agree to remove the connection

(arc subtraction can be unilateral), and a connection can be added to a network if

and only if both players involved in the connection agree to add the connection (arc

addition is bilateral).

(2) Suppose that the feasible set of coalitions is given

F1 = {S ∈ P (D) : |S| = 1} .
Thus, all feasible coalitions consist of one player. The set F1 is, for example, the
feasible set for the noncooperative, Bala-Goyal rules (Bala-Goyal (2000)). If the set

of nodes and the set of players are one in the same, then under the Bala-Goyal rules,

a connection can be added or subtracted from a network if and only if the initiating

player in the connection agrees to add or subtract the connection (arc addition and

subtraction is unilateral).2

(3) Consider the following club network example which illustrates another aspect

of the usefulness of making a distinction between nodes and players. First, suppose

2Let (a, (i, i0)) be a connection in network G where the set of nodes is equal to the set of players.
In the connection (a, (i, i0)), player i is the initiating player.
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that the set of nodes is given by N = I ∪ C, where I = {i1, i2, . . . , iL} is a set of
individuals and C = {c1, c2, . . . , cK} is a set of clubs, and assume that the set of arcs
is given by A = {a1, a2, . . . , aM}. A typical connection in a club network is given by

(a, (i, c)),

where a ∈ A, i ∈ I, c ∈ C, and (a, (i, c)) means that individual i is a member of club
c and takes action a in club c.

Next, suppose that the set of players is given by D = P (I). Thus, a player d ∈ D
is a group or coalition of individuals. Finally, assume that the feasible set of player

coalitions is given by

F2 = {S ∈ P (D) : |S| ≤ 2} .
Thus, each player coalition consists of at most 2 players and each player is a group

of individuals.

2.3 States, Actions, and Payoffs

2.3.1 States

We shall take as the state space the set Ω := (G×F) of all feasible network-player
coalition pairs. Each state in (G×F) has the following interpretation: if (G,S) is the
current state, then G is the current status quo network of social interactions and it

is player coalition S’s turn to propose a new status quo network.

In order to save writing and spare the reader, when no confusion is possible, we

will use Ω to denote the state space G×F and ω to denote an elements (G,S) of the
state space. Thus, we will use the notation

Ω := G×F
and

ω := (G,S).

2.3.2 Actions

In our game each player’s action takes the form of a network recommendation or

network proposal. In particular, given current state ω ∈ Ω, each player d ∈ D has

available a nonempty subset of network proposals Φd(ω) ⊆ G that can be put forth

by player d for consideration by nature. However, only players who are members of

the status quo coalition (i.e., the coalition whose turn it is to move) are allowed to

propose substantive changes and each such proposal must be consistent with the rules

of network formation. In particular, if G0 ∈ Φd(G,S) is proposed by player d ∈ S
(and therefore, by a member of the status quo player coalition), then the proposed

network G0 must be such that under the rules of network formation it is possible
for coalition S or some subcoalition S0 ⊆ S, to which player d belongs to change

the status quo network G to network G0. Moreover, because players who are not
members of the status quo coalition are not allowed to propose substantive changes,

these players (i.e., players d /∈ S) can only propose that the status quo network be
maintained. Formally, we will assume that
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A-3 (properties of constraint mappings)

for each player d ∈ D, the correspondence Φd(·) is such that, for all ω = (G,S)
(a) G ∈ Φd(G,S) for all d ∈ D,

and

(b) {G} = Φd(G,S) for all d /∈ S.

⎫⎬⎭ (2)

Thus, under A-1(a) each player d in each state has the option of proposing that

the status quo network be maintained and under A-1(b) if the player is not part of

the status quo coalition, then the status quo is the only network proposal available

to that player. Moreover, if network G0 ∈ Φd(G,S) is proposed by player d ∈ S, then
under the rules of network formation, it must be feasible for player d, working alone

or together with some subcoalition S0 ⊆ S (including possibly all members of S), to
change the status quo network G to the proposed network G0.

We will denote by Φ(·) the aggregate constraint correspondence,
ω → Φ(ω) := Πd∈DΦd(ω). (3)

2.3.3 Payoffs

In order for players to decide which networks to propose, we must specify player

payoff functions. We shall assume that

A-4 (payoff functions)

each player d ∈ D has a payoff function

rd(·, ·) : Ω×Gm → [−M,M ]. (4)

Thus, if the current state is ω = (G,S) (i.e., if the status quo network is G
and it is coalition S’s turn to move) and if players propose m-tuple of networks

GD := (Gd)d∈D ∈ Φ(ω), then player d0s payoff is given by
rd(ω, GD) := rd(ω, (Gd, G−d)).

2.4 The Law of Motion and the Proposal-Dependent Markov Tran-

sition Matrix

In order to further simplify the notation, let

Ω := {ω1,ω2, . . . ,ωN} , (5)

and let

H := {1, 2, . . . , N} (6)

with typical elements i and j index states. Thus, i ∈ H if and only if ωi ∈ Ω, and for
any nonempty subset E of Ω, i ∈ HE if and only if ωi ∈ E. Often we will use i and
j to denote states, rather than ω (= ωi) and ω0 (= ωj).
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Given the profile of player proposals GD = (Gd)d∈D := (Gd, G−d) and given the
current state, ω = (G,S), nature then chooses the next state (i.e., the next network-
coalition pair) in accordance with the Markov transition law, q(·|·, GD). Thus, given
m-tuple of player proposalsGD and current state ω, the probability with which nature

chooses the next state ω0 is given by q(ω0|ω, GD). For each proposal m-tuple GD,
let Q(GD) be the resulting N ×N Markov transition matrix. The transition matrix

Q(GD) has typical entry
qij(GD) := q(ωj |ωi, GD) (7)

where qij(GD) is the probability that nature moves from state ωi = (Gi, Si) to state
ωj = (Gj , Sj) given player proposals GD.

2.5 Plans and Stationary Strategies

A plan πd = (π0d,π
1
d, . . .) for player d ∈ D is a sequence of history dependent

conditional probability measures on the feasible set of networks G. Under plan

πd at time point n given the history of states and proposal m-tuples, H
n−1 :=¡

ω0, G0D,ω
1, G1D, . . . ,ω

n−1, Gn−1D

¢
, and given the current (time point n) state ωn =

(Gn, Sn), player d chooses a network proposal according to the conditional probability
measure

πnd(·|Hn−1,ωn) ∈ P (Φd(ωn)) . (8)

Here, P (Φd(ωn)) is the set of all probability measures with support contained in
Φd(ω

n). Let Hn−1 denote set of all (n)-histories and let
Πnd := ΠΦd(Hn−1 × Ω,P(Ω))

denote the set of all measurable functions, (Hn−1,ωn) → πnd(·|Hn−1,ωn) ∈ P(Ω)
such that πnd(·|Hn−1,ωn) ∈ P (Φd(ωn)) for all ωn ∈ Ω. Formally, the set of plans for
player d is given by

Π∞d :=
∞Y
n=1

Πnd .

AMarkov plan ψd = (ψ
1
d,ψ

2
d, . . .) for player d ∈ D is a sequence of state-dependent

conditional probability measures on Ω. Under Markov plan ψd, at time point n, given
the current (time point n) status quo network-coalition pair (or state) ωn = (Gn, Sn),
player d chooses a network proposal according to the conditional probability measure

ψnd(·|ωn) ∈ P (Φd(ωn)) . (9)

Let

Σnd := ΣΦd(Ω,P(Ω)) := ΣΦd
denote the set of all measurable functions, ω → ψnd(·|ω) ∈ P(Ω) such that ψnd(·|ωn) ∈
P (Φd(ωn)) for all ωn ∈ Ω. The set of Markov plans for player d is given by

Σ∞d :=
∞Y
n=1

Σnd .

9



A stationary Markov plan (σd,σd, . . .) for player d ∈ D - or as we shall call it here,
a stationary strategy for player d ∈ D - is a constant sequence of state-dependent

conditional probability measures on Ω. Under stationary strategy (σd,σd, . . .) given
the current (time point n) status quo network-coalition pair (or state) ωn = (Gn, Sn),
player d, at each and every time point n, chooses a network proposal according to

the conditional probability measure

σd(·|ωn) ∈ P (Φd(ωn)) . (10)

Rather than write σd(·|ω) we will sometimes write σd(ω).
A pure stationary strategy for player d ∈ D is a stationary Markov strategy

(σd,σd, . . .) such that for some function

fd(·) : Ω→ G with fd(ω) ∈ Φd(ω) for all ω ∈ Ω,
σd(fd(ω)|ω) = 1 for all ω ∈ Ω. (11)

Thus under pure stationary strategy (σd,σd, . . .) in any state ω ∈ Ω, the conditional
probability measure for player d assigns probability 1 to the network proposal fd(ω) ∈
Φd(ω).

3 Rather than represent a pure stationary strategy for player d ∈ D using

a conditional probability measure σd(·|ω) concentrating all its probability mass on
a particular state dependent network fd(ω), we will often times instead represent
a pure stationary strategy for player d ∈ D using the underlying function fd(·).
Thus, a pure stationary strategy for player d ∈ D will often times be described as a

constant sequence of functions (fd, fd, . . .) such that for all ω ∈ Ω.fd(ω) ∈ Φd(ω) and
σd(fd(ω)|ω) = 1.

2.6 Player Payoffs

Given m-tuple of stationary strategies (σd(·|·))d∈D, if the current state is ω ∈ Ω then
player d’s immediate expected payoff is

rd(ω,σD(ω)) :=
X

GD∈Φ(ω)
rd(ω, GD)σD(GD|ω)

where σD(ω) := σD(·|ω) is the product measure ×dσd(·|ω) with support contained in
Φ(ω) := Πd∈DΦd(ω) ⊆ Gm.

If network proposal m-tuple GD is chosen according to product measure σD(·|ω),
then nature chooses the next network-coalition pair (i.e., the next state) according

to the probability measure q(·|ω, GD).
Let

rnd (σD)(ω)

:=

⎧⎪⎨⎪⎩
P
GD∈Φ(ω) rd(ω, GD)σD(GD|ω) for n = 0

P
ω0∈Ω

hP
GD∈Φ(ω) rd(ω

0, GD)σD(GD|ω0)
i
q(n)(ω0|ω,σD(ω)) for n ≥ 1,

3Such a conditional probability measure is often denoted using a Dirac measure notation, δfd(ω).
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denote the nth period expected payoff to player d under stationary strategy σD(·)
starting at network-coalition pair ω = (G,S) given law of motion q(·|·,σD(·)).4 Here,
for n ≥ 1, qn(·|ω,σD(ω)) is defined recursively by

q(n)(E|ω,σD(ω))

=
P

ω0∈Ω q
(n−1)(E|ω0,σD(ω0))q(ω0|ω,σD(ω))

=
P

ω0∈Ω q
(n−1)(ω0|ω,σD(ω))q(E|ω0,σD(ω0)).

The discounted expected payoff to player d over an infinite time horizon under sta-

tionary strategy σD(·) ∈
Q
d∈D ΣΦd starting at state ω is then given by

Ed(σD)(ω) :=
∞X
n=0

βndr
n
d (σD)(ω).

In general, the discounted expected payoff to player d over an infinite time horizon

under plan πD = (πd)d∈D ∈ Π∞ :=
Q
d∈D Π

∞
d starting in state ω is then given by

Ed(πD)(ω) :=
∞X
n=0

βndr
n
d (πD)(ω).

3 Dynamic Network Formation Games

3.1 Existence of Nash Equilibrium in Stationary Strategies

A dynamic network formation game is given by

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .
A dynamic network formation game starting at state ω ∈ Ω is given by

Γω := (Ω, Ed(·)(ω),Π∞d )d∈D .
4We will regularly abuse our own notation by using

σD(·) := σD(·|·)
to denote the conditional product probability measure

×dσd(·) := ×dσd(·|·)
as well as to denote the m-tuple of conditional probability measures

(σd(·),σ−d(·)) := (σd(·|·),σ−d(·|·)).
Thus, depending on the context,

σD(·) := ×dσd(·|·)
or

σD(·) := (σd(·),σ−d(·)),
and of course, we claim that the meaning will be clear from the context.
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Definition 4 (Nash Equilibrium)

A stationary strategy (σ∗d(·|·))d∈D with corresponding m-tuple of stationary strategies
σ∗D(·) = (σ∗d(·|·))d∈D is a Nash equilibrium of the dynamic network formation

game Γ if for all starting network-coalition pairs ω = (G,S) ∈ G×F and all

players d ∈ D,
Ed(σ

∗
d,σ

∗
−d)(ω) ≥ Ed(πd,σ∗−d)(ω) for all πd ∈ Π∞d .

Thus, an m-tuple of stationary strategies (σ∗d(·|·))d∈D is a Nash equilibrium of

dynamic network formation game Γ if it is a Nash equilibrium for the game Γω for
all starting states.

Theorem 1 (The Existence of Nash Equilibrium in Stationary Strategies)

Under assumptions [A-1]-[A-4] the dynamic network formation game,

Γ := (Ω, Ed(·)(·),Π∞d )d∈D ,

has a Nash equilibrium in stationary strategies.

Theorem 1 is an immediate consequence of Theorem 1 in Federgruen (1978).

Moreover, letting

w∗d(ω) := Ed(σ
∗
d,σ

∗
−d)(ω),

by Theorem 6f in Blackwell (1968), (σ∗d(·|·))d∈D is a Nash equilibrium in stationary

strategies if and only if

w∗d(ω) = max
σ0∈P(Φd(ω))

Ã
rd(ω, (σ

0,σ∗−d(ω)) + βd

X
ω0∈Ω

w∗d(ω
0)q(ω0|ω, (σ0,σ∗−d(ω))

!
,

for all ω ∈ Ω and d ∈ D. The quantity, w∗d(ω), is the present value to player d of
following his stationary strategy, σ∗d(·), in proposing networks in all future periods,
starting in state ω and assuming that all other players also follow their stationary

strategies, σ∗−d(·), in proposing networks in all future periods. We will refer to the
function w∗d(·) : Ω→ [−M,M ] as player d0s value function and we will write wD(·) to
denote the m-tuple of value functions, (wd(·))d∈D - and we will write w∗d(·) to denote
player d0s equilibrium value function.

3.2 Characterization of Stationary Equilibria

In addition to the characterization of stationary equilibria due to Blackwell (1968),

there is also a nonlinear programming characterization of stationary equilibria due

to Filar, Schultz, Thuijsman, and Vrieze (1991).5 We state their characterization

5Herings and Peeters (2004) also provide a nonlinear programming characterization of stationary

equilibria (see Theorem 3.6, page 40, in Herings and Peeters 2004).
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result here for the convenience of the reader, and in Example 3, we will use their

characterization result to construct an example of a pure stationary equilibrium in a

dynamic club network formation game.

To begin, let βd be player d
0s discount rate and let

(wD(·),σD(·)) := (wd(·),σd(·|·))d∈D
denote an m-tuple of value function-stationary strategy pairs where for each player d

wd(·) : Ω→ [−M,M ] and σd(·) : Ω→ P(Ω),

such that σd(ω) ∈ P (Φd(ω)) for all ω ∈ Ω.

Theorem 2 (A Nonlinear Programming Characterization of Stationary Equilibria)

Suppose that assumptions [A-1]-[A-4] hold. A valuation function, stationary strategy

profile pair (w∗D(·),σ∗D(·)) solves the dynamic network formation game Γ if and
only if (w∗D(·),σ∗D(·)) solves

min
X
d∈D

X
i∈H

⎡⎣wd(ωi)− rd(ωi,σD(ωi))− βd

X
j∈H

wd(ωj)q(ωj |ωi,σD(ωi))
⎤⎦ (12)

over σD(·) such that for all d ∈ D and ωi ∈ Ω, σd(ωi) ∈ P (Φd(ωi)) and over
wD(·) such that for all d ∈ D, ωi ∈ Ω, and Gd ∈ Φd(ωi)

wd(ωi) ≥ rd(ωi, Gd,σ−d(ωi)) + β
X
j∈H

wd(ωj)q(ωj |ωi, Gd,σ−d(ωi))

Moreover, if (w∗D(·),σ∗D(·)) solves (12), then letting

m∗ :=
X
d∈D

X
i∈H

⎡⎣w∗d(ωi)− rd(ωi,σ∗D(ωi))− β
X
j∈H

w∗d(ωj)q(ωj |ωi,σ∗D(ωi))
⎤⎦ ,

m∗ ≥ 0, and if m∗ > 0, then σ∗D(·) is an ε-equilibrium with ε ∈ (0, m∗1−β ).

Example 3: Pure Stationary Equilibrium in a Dynamic Club Network

Formation Game

First, as in Example 2(3), assume that the set of nodes is given by N = I ∪ C,
where I = {w1, w2, b} is a set of individuals and C = {c1, c2} is a set of clubs
and suppose that the set of arcs is given by A = {1}, where a = 1 denotes club
membership by an individual. Thus, a typical connection is given by (1, (i, c)),
where i ∈ I, c ∈ C, and (1, (i, c)) means that individual i is a member of club
c.

13



Next, suppose that the set of players is given by

D = {d1, d2} = {{w1, b}, {w2, b}}.
Thus, a player di is a group of individuals and here player d1 is the group

{w1, b}, while player d2 is the group {w2, b}.
Finally, assume that the feasible set of player coalitions is given by

F1 = {{d1}, {d2}}.
Thus, each player coalition consists of a single player and each player is a group

of individuals. Note that individual w1 is in group d1 but not in group d2
and that individual w2 is in group d2 but not in group d1 (i.e., wi ∈ di for all
i), while individual b is in both groups. We will assume that whenever it is

coalition {di}0s turn to move (i.e., whenever {di} is the status quo coalition),
then player di (i.e., group {wi, b}) is represented by individual wi (the group
leader). In particular, we will assume that individual wi has complete control

over the membership moves of all members of group di (i.e., wi has complete

control over his membership moves and the membership moves of individual b).

But these moves are subject to the following constraints:

(1) individual w1 cannot be a member of club c2.

(2) individual b can be a member of club c1 if and only if individuals w1 and

w2 are members of club c1.

The set of all single individual membership club networks GK1 is given by the
collection of all nonempty subsets G of A × (I × C) such that for all i ∈ I,
|G(i)| = 1. The set of all such club networks satisfying conditions (1) and (2)
is the subset of GK1 given by

G = {G1, G2, G3},
with networks as depicted in Figure 3.

w1

w2

b

c1

c2

w1

w2

b

c1

c2

w1

w2

b

c1

c2

G1 G2 G3
Figure 3: The Feasible Set of Club Networks
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The set of states is given by

Ω =

⎧⎨⎩(G1, {d1})| {z }
ω1

, (G1, {d2})| {z }
ω2

, (G2, {d1})| {z }
ω3

, (G2, {d2})| {z }
ω4

, (G3, {d1})| {z }
ω5

, (G3, {d2})| {z }
ω6

⎫⎬⎭ .
Table 1 below lists players’ state-contingent network proposal constraint sets.

Φd1(·) Φd2(·)
ω1 {G1, G3} {G1}
ω2 {G1} {G1, G2, G3}
ω3 {G2} {G2}
ω4 {G2} {G1, G2, G3}
ω5 {G1, G3} {G3}
ω6 {G3} {G1, G2, G3}

Table 1: Player’s State-Contingent Constraint Sets

For example, in state ω5 = (G3, {d1}) player d1 has available network proposals
G1 and G3 (i.e., Φd1(ω5) = {G1, G3}).

We will assume that each player’s payoff function,

rd(·, ·) : Ω×Gm → [−M,M ],
depends only on the status quo state. Thus, for all players d ∈ D and for all

state-network proposal pairs,

(ω, GD) = ((G, {d0})| {z }
ω

, GD) ∈ Ω×Gm,

payoffs are given by

rd(ω, GD) = vd(ω),

where vd(·) is the total payoff to player d in state ω = (G, {d0}). Table 2 lists
each player’s state-contingent payoffs.

(G1, {d1})| {z }
ω1

(G1, {d2})| {z }
ω2

d1 vd1(ω1) = 3 vd1(ω2) = 3
d2 vd2(ω1) = 2 vd2(ω2) = 2

(G2, {d1})| {z }
ω3

(G2, {d2})| {z }
ω4

d1 vd1(ω3) = 2 vd1(ω4) = 2
d2 vd2(ω3) = 1 vd2(ω4) = 1

(G3, {d1})| {z }
ω5

(G3, {d2})| {z }
ω6

d1 vd1(ω5) = 1 vd1(ω6) = 1
d2 vd2(ω5) = 3 vd2(ω6) = 3

Table 2: State-Contingent Player Payoffs
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Note that state-contingent payoffs are in fact invariant with respect to the

coalition, {d1} or {d2}, whose turn it is to move. For example, according to
Table 2, in both states ω1 and ω2 player d2 receives payoff vd2(ω1) = 2. In
vector form the state-contingent payoffs to each player are given by

rd1 = (rd1(ω1, GD), . . . , rd1(ω6, GD))
= (vd1(ω1), . . . , vd1(ω6))

= (3, 3, 2, 2, 1, 1)
and

rd2 = (rd2(ω1, GD), . . . , rd2(ω6, GD))
= (vd2(ω1), . . . , vd2(ω6))

= (2, 2, 1, 1, 3, 3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

Using the nonlinear programming characterization of stationary equilibria given in

Theorem 2, we will show that the pure stationary strategies for players d1 and

d2 given in Table 3 are Nash equilibrium proposal strategies for the dynamic

game of club network formation.

states f∗d1(·) f∗d2(·)
ω1 = (G1, {d1}) f∗d1(ω1) = G1 f∗d2(ω1) = G1
ω2 = (G1, {d2}) f∗d1(ω2) = G1 f∗d2(ω2) = G3
ω3 = (G2, {d1}) f∗d1(ω3) = G2 f∗d2(ω3) = G2
ω4 = (G2, {d2}) f∗d1(ω4) = G2 f∗d2(ω4) = G3
ω5 = (G3, {d1}) f∗d1(ω5) = G1 f∗d2(ω5) = G3
ω6 = (G3, {d2}) f∗d1(ω6) = G3 f∗d2(ω6) = G3

Table 3: Pure Strategies

For example, according to Table 3, in state ω4, player d2 proposes feasible

network f∗d2(ω4) = G3. Using the state-contingent proposal constraint sets in

Table 1, we can easily list the feasible deviations from the equilibrium proposals

given in Table 3.

states

ω1 f∗d1(ω1) = G1 → G3 f∗d2(ω1) = G1
ω2 f∗d1(ω2) = G1 f∗d2(ω2) = G3 → G1, G2
ω3 f∗d1(ω3) = G2 f∗d2(ω3) = G2
ω4 f∗d1(ω4) = G2 f∗d2(ω4) = G3 → G1, G2
ω5 f∗d1(ω5) = G1 → G3 f∗d2(ω5) = G3
ω6 f∗d1(ω6) = G3 f∗d2(ω6) = G3 → G1, G2

Table 4: Feasible Deviations

For example, according to Table 4, in state ω2 = (G1, {d2}) player 1 proposes
f∗d1(ω2) = G1 and has no feasible deviations (because it is not player 1’s turn
to move, player 1 can only propose the status quo G1). However, in state

ω2 = (G1, {d2}), player 2 proposes f∗d2(ω2) = G3 and has two feasible deviations,
G1 and G2.
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We will assume that the law of motion, q(·|·, ·) is such that given any status quo state,
only states containing networks proposed by one of the players are assigned

positive probabilities. For example, if players d1 and d2 both propose network

G2, then starting at any status quo state, say ω = (G, {d}), only states
(G2, {d1})| {z }

ω3

and (G2, {d2})| {z }
ω4

,

are assigned positive probability. Let Ω(Gdj ) denote the set of states containing
the network Gdj proposed by player dj . Thus, under the law of motion, only

states contained in Ω(Gd1) ∪Ω(Gd2) are assigned positive probabilities.
Further, we will assume that these probabilities are given by

q(ω
0 |ω, (Gdj )dj ) =

P
dj∈D

∙
e

³
vdj (ω

0)−vdj (ω)
´
IΩ(Gdj )

(ω0)
¸

P
ω00∈Ω

P
dj∈D

∙
e

³
vdj (ω

00 )−vdj (ω)
´
IΩ(Gdj )

(ω00)
¸ , (14)

where for states ω ∈ Ω

IΩ(Gdj )
(ω) =

⎧⎨⎩
1 if ω ∈ Ω(Gdj )

0 if ω /∈ Ω(Gdj ).
For example, if the status quo state is ω3 = (G2, {d1}) and both players propose
network G2, then the probability that state ω3 occurs (i.e., that the process

stays in state ω3) is given by

q(ω3|ω3, G2, G2)

=

∙
e(vd1(ω3)−vd1(ω3))

¸
+

∙
e(vd2(ω3)−vd2(ω3))

¸
∙
e(vd1 (ω3)−vd1(ω3))

¸
+

∙
e(vd1(ω4)−vd1(ω3))

¸
+

∙
e(vd2(ω3)−vd2(ω3))

¸
+

∙
e(vd2(ω4)−vd2 (ω3))

¸

=
[e0]

[e0]+[e0]+[e0]+[e0] = .5.

This probability is higher than it would have been had player 2, for example,

proposed instead network G1 - because G1 is not the network in state ω3 =
(G2, {d1}). Specifically, we would have
q(ω3|ω3, G2, G1)

=

∙
e(vd1(ω3)−vd1(ω3))IΩ(G2)(ω3)

¸
∙
e(vd1 (ω3)−vd1(ω3))

¸
+

∙
e(vd1(ω4)−vd1(ω3))

¸
+

∙
e(vd2(ω1)−vd2(ω3))

¸
+

∙
e(vd2(ω2)−vd2 (ω3))

¸

=
[e0]

[e0]+[e0]+[e1]+[e1]
= . 13447.
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Moreover, if both players had proposed network G1, then (because the state

whose probability we are trying to compute contains no network proposed by

any player) we would have

q(ω3|ω3, G1, G1) = 0.

Note that under the law of motion (14), states containing proposed networks

that generate higher incremental payoffs to players relative to the status quo

are assigned higher probabilities.

The Markov transition matrix induced by pure strategies f∗D(·) = (f∗d1(·), f∗d2(·)) is
given by6

Q(f∗D) =

⎛⎜⎜⎜⎜⎜⎜⎝

.5 .5 0 0 0 0
. 13447 . 13447 0 0 . 36553 . 36553
0 0 .5 .5 0 0
0 0 .059601 .059601 . 4404 . 4404

. 4404 . 4404 0 0 .059601 .059601
0 0 0 0 .5 .5

⎞⎟⎟⎟⎟⎟⎟⎠ .

Player d0js value function, w
∗
dj
(·), in vector form, is given by

w∗dj =
h
I − βdjQ(f

∗
D)
i−1

vdj .

Here, w∗dj ∈ R6 is the column vector listing the state-contingent values to player
dj of following strategy f

∗
dj
(·), vdj ∈ R6 is the column vector of state-contingent

payoffs to player dj (see expression (13)), and I is the 6 × 6 identity matrix.
As noted already by Herings and Peeters (2004), because Q(f∗D) is a stochastic
matrix, with rows nonnegative and summing to 1, it follows from Hadamard’s

Theorem that the inverse
h
I − βdjQ(f

∗
D)
i−1

exists and is given by

h
I − βdjQ(f

∗
D)
i−1

=
∞X
n=0

βndjQ(f
∗
D)
n.

By computation, the value functions w∗D(·) = (w∗d1(·), w∗d2(·)), in vector form, are
given by

w∗d1 =
¡
3. 1559 3. 0822 2. 1041 2. 0609 1. 1439 1. 0549

¢
,

and

w∗d2 =
¡
2. 0839 2. 1134 1. 0432 1. 1146 3. 0887 3. 1244

¢
.

6The computations leading to transition matrix Q(fD) are quite long and tedious. They have
been gathered in a working paper which is available upon request.

18



Given that

w∗dj =
h
I − βdjQ(f

∗
D)
i−1

vdj ,

we have for all states ωi and players dj that

w∗dj (ωi)− vdj (ωi)− βdj
P
k∈H w

∗
dj
(ωk)q(ωk|ωi, f∗D(ωi)).

= w∗dj (ωi)− rdj (ωi, f∗D(ωi))− βdj
P
k∈H w

∗
dj
(ωk)q(ωk|ωi, f∗D(ωi))

= 0,

Thus, (w∗D(·), f∗D(·)) solves the minimization problem

min
X
d∈D

X
i∈H

⎡⎣wd(ωi)− rd(ωi,σD(ωi))− βd

X
j∈H

wd(ωk)q(ωi|ωi,σD(ωi))
⎤⎦ ,

by attaining the lower bound of zero.

By Theorem 2, therefore, in order to show that the valuation function-strategy pair

(w∗D(·), f∗D(·)) is an equilibrium, it remains only to show that no player dj , in
any state ωi, can make himself better off by deviating to a feasible proposal G

0

∈ Φdj (ωi) from the proposal f∗dj (ωi) ∈ Φdj (ωi) specified by his strategy f∗dj (·),
assuming that all other players continue to follow their strategies, f∗−dj (·). This
requires that for all states ωi we recompute the ith row of the transition matrix

Q(f∗D) (i.e., the row corresponding to state ωi), given by

q(·|ωi, G0
, f∗−dj (ωi)) := (q(ω1|ωi, G

0
, f∗−dj (ωi)), . . . , q(ω6|ωi, G

0
, f∗−dj (ωi)),

for all feasible deviations G
0 ∈ Φdj (ωi) for all players dj and then check that

inequality

w∗dj (ωi) ≥ vdj (ωi) + βdj

X
k∈H

w∗dj (ωk)q(ωk|ωi, G
0
, f∗−dj (ωi)).

holds. For example, for the feasible state ω6 player d
0
2s deviation from f

∗
d2
(ω6) =

G3 to G2, we have

q(·|ω6, f∗d1(ω6), f∗d2(ω6)) :=
¡
0 0 0 0 . 5 . 5

¢
↓

q(·|ω6, f∗d1(ω6), G2, ) :=
¡
0 0 .059603 .059603 .4404 .4404

¢
and given that w∗d2(ω6) = 3. 1244, vd2(ω6) = 3, and βd2 = .04, we conclude that

19



w∗d2(ω6) = 3. 1244

> 3 + (.04)
¡
0 0 .059603 .059603 .4404 .4404

¢
⎛⎜⎜⎜⎜⎜⎜⎝

2. 0839
2. 1134
1. 0432
1. 1146
3. 0887
3. 1244

⎞⎟⎟⎟⎟⎟⎟⎠ = 3. 1146

= vd2(ω6) + βd2
P
k∈H w

∗
d2
(ωk)q(ωk|ω6, f∗d1(ω6), G2).

Thus, player d2 is not made better off by this deviation. Checking all such deviations

for all players in all states, we conclude from Theorem 2 that (w∗D(·), f∗D(·)) is an
equilibrium, and in particular, that the pure stationary strategy f∗D(·) specified in
Table 3 is Nash.

4 Endogenous Network Dynamics

4.1 The Equilibrium Markov Transition Kernel

Under stationary equilibrium, σ∗D(·) = (σ∗d(·|·))d∈D, the endogenous Markov process
of network and coalition formation,

{W ∗
n}n = {(G∗n, S∗n)}∞n=0 ,

is governed by the equilibrium Markov transition kernel,

p∗(E|ω) =Pω0∈E q(ω
0|ω,σ∗D(ω))

=
P
G0D∈Φ(ω)

P
ω0∈E q(ω

0|ω, G0D)σ∗D(G0D|ω)

=
P
G0D∈Φ(ω) q(E|ω, G

0
D)σ

∗
D(G

0
D|ω).

for all E ⊆ Ω.7 Thus, for all n = 0, 1, 2, . . ., the probability that the process {W ∗
n}∞n=0

reaches the set of states E ∈ B(Ω) in n moves given initial stateW0 = ω0 and history

W1 = ω1, . . . ,Wn−1 = ωn−1 is given by

Π
©
W ∗
n ∈ E|W ∗

n−1 = ω
ª
= p∗(E|ω),

and thus depends only on state of the process after n−1 moves and not on the whole
history of the process.8 Moreover, for all n = 0, 1, 2, . . .,

Π {W ∗
n ∈ E|W ∗

0 = ω} = p∗(n)(E|ω) = q(n)(E|ω,σ∗D(ω)),
7To put our model on a sound foundation, we will assume - as is standard in Markov Process

Theory - that there is a probability space (Θ,=,Π) underlying our equilibrium process {W ∗
n}n.

8Here, Π is the probability measure defined on the measurable space (Θ,=) underlying the process
of network and coalition formation. Thus, we are assuming that the Markov process {W ∗

n}n of
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where the n-step transition p∗(n)(·|·) is given recursively as follows: for all ω ∈ Ω and
E ⊆ Ω,

p∗(n)(E|ω) =
X
ω0∈Ω

p∗(E|ω0)p∗(n−1)(ω0|ω) =
X
ω0∈Ω

p∗(n−1)(E|ω0)p∗(ω0|ω). (15)

4.2 The Equilibrium Markov Transition Matrix

We can also represent the equilibrium Markov transition p∗(·|·) via a Markov tran-
sition matrix. In particular, given stationary equilibrium, σ∗D(·) = (σ∗d(·|·))d∈D, let
Q∗ be the resulting N× N equilibrium Markov transition matrix, where Q∗ has typ-
ical entry q∗ij (= q(ωj |ωi,σ∗D(ωi))), where q∗ij is the probability that nature moves
from state ωi = (Gi, Si) to state ωj = (Gj , Sj) given stationary equilibrium proposal

strategies, σ∗D(·). Note that each row of Q∗, given by
p∗i = (q

∗
i1, q

∗
i2, . . . , q

∗
iN ) := (Q

∗)i, (16)

is a conditional probability measure on the state space Ω, that is, p∗i ∈ P(Ω), where
the set of probability measures P(Ω) is given by

P(Ω) =
⎧⎨⎩p = (q1, . . . , qN ) ∈ RN : qj ≥ 0 and X

j∈H
qj = 1

⎫⎬⎭ . (17)

Given initial probability measure γ∗ = (γ∗1, γ∗2, . . . , γ∗N) ∈ P(Ω) prescribing the
probability with which the initial state i0 (or equivalently, ωi0 = (Gi0 , Si0)) is chosen,
the probability that the process is in state in after n moves is given by

Π{W ∗
n = ωin} = (γ∗Q∗n)in =

X
i0∈H

γ∗i0(Q
∗n)i0in

where

Q∗n is the matrix obtained by multiplying Q∗by itself n times,

(γ∗Q∗n)in is the ithn component of the row vector γ∗Q∗n,
and

(Q∗n)i0in := q
∗(n)
i0in

is the (i0, in)
th entry of the matrix Q∗n.

For example if n = 2, then

(γ∗Q∗n)i2 =
X
i0∈H

γ∗i0(Q
∗2)i0i2 =

X
i0∈H

γ∗i0(
X
i1∈H

q∗i0i1q
∗
i1i2
).

network and coalition formation is a sequence of Ω-valued, =-measurable functions
W ∗
n : Θ→ Ω := (G×F),

such that,
Π{Wn ∈ E|W0 = ω0,W1 = ω1, . . . ,Wn−1 = ωn−1}

= Π{Wn ∈ E|Wn−1 = ωn−1}
Πωn−1{Wn ∈ E}.
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The probability that the process is in state in after n moves starting from state

i0 is given by

Πωi0
{W ∗

n = ωin} := Π{W ∗
n = ωin |W ∗

0 = ωi0} = (Q∗n)i0in = q∗(n)i0in

For example if n = 2, then

(Q∗2)i0i2 = q
∗(2)
i0i2

=
X
i1∈H

q∗i0i1q
∗
i1i2
.

4.3 The Equilibrium Markov Supernetwork

Corresponding to the equilibrium Markov transition matrix Q∗ there is a unique
directed network M∗ - a supernetwork (Page, Wooders, and Kamat (2005) - where

M∗ ⊂ [0, 1]× (Ω× Ω),

with typical connection (q∗ij , (ωi,ωj)) where q
∗
ij is the ij

th entry in the equilibrium

Markov transition matrix Q∗ and ωi and ωj are network-coalition pairs contained in

the state space. The connection (q∗ij , (ωi,ωj)) ∈M∗ is active if and only if the process
of network-coalition formation {W ∗

n} governed by equilibrium Markov transition Q∗

is such that for all n = 1, 2, . . . ,

Π{W ∗
n = ωj |W ∗

n−1 = ωi} = q∗ij > 0.

Examples 4: Endogenous Supernetworks

(1) Consider process of network-coalition formation {W ∗
n} with state space

Ω := {ω1,ω2, . . . ,ω6} ,

governed by equilibrium Markov transition matrix Q∗ given by

Q∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
.4 .6 0 0 0 0
.3 0 .4 .2 .1 0
0 0 0 .3 .7 0
0 0 0 .5 0 .5
0 0 0 .8 0 .2

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The corresponding equilibrium Markov supernetworkM∗ (with only active con-
nections shown) is depicted in Figure 4.
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Figure 4: The Equilibrium Markov Supernetwork

(2) Consider the process of network-coalition formation {Wn(f
∗
D)} governed by the

equilibrium Markov transition Q(f∗D) induced by the pure stationary equilib-
rium strategies f∗D = (f

∗
d1
, f∗d2) in Example 3, and recall that the state space is

given by

Ω =

⎧⎨⎩(G1, {d1})| {z }
ω1

, (G1, {d2})| {z }
ω2

, (G2, {d1})| {z }
ω3

, (G2, {d2})| {z }
ω4

, (G3, {d1})| {z }
ω5

, (G3, {d2})| {z }
ω6

⎫⎬⎭ .
The equilibrium Markov transition matrix, Q(f∗D), is given by

Q(f∗D) =

⎛⎜⎜⎜⎜⎜⎜⎝

.5 .5 0 0 0 0
. 13447 . 13447 0 0 . 36553 . 36553
0 0 .5 .5 0 0
0 0 .059601 .059601 . 4404 . 4404

. 4404 . 4404 0 0 .059601 .059601
0 0 0 0 .5 .5

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The corresponding equilibrium Markov supernetwork M(f∗D) (with only active
connections shown) is depicted in Figure 5.
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Figure 5: The Equilibrium Markov Supernetwork M(f∗D)

4.4 Three Fundamental Results on Finite-State Markov Chains

4.4.1 Hitting Times

Often we will be interested in determining the probability with which the network-

coalition formation process reaches (hits in finite time) a particular network-coalition

pair ωj = (Gj , Sj) after leaving a particular network-coalition pair ωi = (Gi, Si).
To begin, let the integer-valued random variable, T ∗ωj (·) : Θ→ {0, 1, 2, . . .}, given

by

T ∗ωj := min {n ≥ 1 :W ∗
n = ωj} (18)

be the hitting time of network-coalition formation process {W ∗
n}n for state ωj ∈ Ω,

and let

ρ∗ij := Π
n
T ∗ωj <∞|W ∗

0 = ωi

o
. (19)

be the probability that the process {W ∗
n}n reaches the state ωj after leaving state

ωi at time zero in finite time. Also, the expected hitting time (expected number of

moves) for the process {W ∗
n}n to reach ωi again after leaving ωi at time zero is

EωiT
∗
ωi
:= E(T ∗ωi |W ∗

0 = ωi) =
∞X
n=0

Π
©
T ∗ωi > n|W ∗

0 = ωi
ª
=

∞X
n=0

Πωi

©
T ∗ωi > n

ª
. (20)

Next consider the sequence of hitting times {T ∗kωi }∞k=0 defined recursively as fol-
lows: T ∗0ωi := 0 and for k ≥ 1,

T ∗kωi := inf
n
n > T ∗k−1ωi

:W ∗
n = ωi

o
. (21)

24



T ∗kωi is the number of moves required for the k
th return to ωi. Note that T

∗1
ωi
> 0, so

any visit to ωi at time 0 does not count. Note also that T
∗
ωi
= T ∗1ωi . The following

two results on hitting times can be found in Durrett (2005) section 5.3.

Theorem 3 (On Hitting Times)

Let {W ∗
n}∞n=0 be an endogenous Markov process of network and coalition formation

governed by equilibrium Markov transition Q∗ with state space

Ω := {ω1,ω2, . . . ,ωN} .
The following statements are true:

(1) For all k and all states ωi and ωj, Π
n
T ∗kωj <∞|W ∗

0 = ωi

o
= ρ∗ijρ

∗k−1
jj .

(2) For all states ωi, ωj, and ωh, ρ
∗
ih ≥ ρ∗ijρ

∗
jh.

4.4.2 Recurrence and Transience

A network-coalition pair ωi = (Gi, Si) is said to be recurrent if ρ
∗
ii = 1 and transient

if ρ∗ii < 1. By part (1) of Theorem 3, if ωj is recurrent, then the number of moves

required for the kth return to ωj is finite with probability 1 - or stated formally, if ωj
is recurrent, then

Π
n
T ∗kωj <∞|W ∗

0 = ωj

o
= 1 for all k.

A network-coalition pair ωi = (Gi, Si) is said to be positive recurrent if EωiT
∗
ωi
<∞

and null recurrent if EωiT
∗
ωi
= ∞. It is easy to show that all recurrent states of a

finite state Markov chain are positive recurrent.

Given any state ωj ∈ Ω, the number of visitations to ωj by the process {W ∗
n}n =

{(G∗n, S∗n)}∞n=1 after time zero is given by

V ∗ωj :=
∞X
n=1

I{W∗
n=ωj}. (22)

If network-coalition pair ωj = (Gj , Sj) is transient, then the expected number of
visitations to ωj starting from network-coalition pair ωi = (Gi, Si) is given by

g∗ij := Eωi [V
∗
ωj
] =

P∞
k=1Πωi{V ∗ωj ≥ k}

=
P∞
k=1Π

n
T ∗kωj <∞|W ∗

0 = ωi

o
=
P∞
k=1 ρ

∗
ijρ
∗k−1
jj (by Theorem 3 (1))

=
ρ∗ij
1−ρ∗jj <∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(23)
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We can conclude from (23) that in fact ωj is recurrent if and only if

g∗jj := Eωj [V
∗
ωj
] =∞.

The following classical result on recurrent states can also be found in Durrett (2005),

for example.

Theorem 4 (Recurrence is Contagious)

Let {W ∗
n}∞n=0 be an endogenous Markov process of network and coalition formation

governed by equilibrium Markov transition Q∗ with state space

Ω := {ω1,ω2, . . . ,ωN} .

If network-coalition pair ωi = (Gi, Si) is recurrent and network-coalition pair ωj =
(Gj , Sj) is reachable, that is, if ρ∗ij > 0, then ωj = (Gj , Sj) is recurrent and
ρ∗ji = 1.

The following classical results tell us the precise relationship between irreducibil-

ity, recurrence, and closedness (see, for example, Durrett (2005)).

Theorem 5 (Closedness and Irreducibility Imply Recurrence)

Let {W ∗
n}∞n=0 be an endogenous Markov process of network and coalition formation

governed by equilibrium Markov transition Q∗ with state space

Ω := {ω1,ω2, . . . ,ωN} .
The following statements are true:

(1) If A∗ ⊆ Ω is closed, then it contains at least one recurrent network-coalition
pair ωi = (Gi, Si), that is, ρ

∗
ii = 1 (or equivalently, g

∗
ii =∞) for some ωi ∈ A∗.

Moreover, A∗ ⊆ Ω is closed if and only if for all ωi ∈ A∗ and for all n
Π {W ∗

n ∈ A∗|W ∗
0 = ωi} = 1. (*)

(2) If A∗ ⊆ Ω is closed and irreducible, then it is recurrent .
Proof. : (1) The proof of (*) is straightforward. Now suppose A∗ is closed but
contains no recurrent states, so that g∗jj < ∞ for all ωj ∈ A∗. But now we have a
contradiction because by (23) and (*) in part (1) we have for all ωi ∈ A∗ and for all
n

∞ >
P
j∈HA∗ g

∗
ij :=

P
ωj∈A∗ E

∗
ωi
[V ∗ωj ]

=
P
j∈HA∗

P∞
n=1 q

∗(n)
ij =

P∞
n=1

P
j∈HA∗ q

∗(n)
ij

=
P∞
n=1Π {W ∗

n ∈ A∗|W ∗
0 = ωi}

= limn→∞ n.
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(2) Suppose A∗ is closed and irreducible. By closedness we know by part (1) that
there is at least one recurrent state in A∗. By the Contagious Theorem 3 we know that
any state reachable from this recurrent state is also recurrent. By irreducibility, we

know that all states in A∗ are reachable. Therefore, all states in A∗ are recurrent.

4.5 Decomposition and Ergodicity

One of our primary objectives is to show that an endogenous Markov process of

network and coalition formation governed by equilibrium Markov transition Q∗ with
state space

Ω := {ω1,ω2, . . . ,ωN} ,
generates a unique decomposition of the state space Ω of network-coalition pairs given
by

Ω = ∪kA∗k ∪ T,
where each Ak is a basin of attraction and T is transient. This decomposition is

the unique stability signature of the Nash equilibrium (σ∗d(·|·))d∈D of the dynamic

game of network formation. We will also show that this endogenous network dynamic

possesses a unique finite set of ergodic probability measures (i.e., long run equilibrium

probability measures) over network-coalition pairs, one for each basin of attraction,

and that each invariant probability measure is then a convex combination of these

ergodic measures. This set of ergodic measures is the unique probabilistic signature

of the Nash equilibrium.

4.5.1 Basins of Attraction

We say that there is a path from state ωi to state ωj if ρ
∗
ij > 0. If, in addition,

ρ∗ji > 0, so there is a path back, then we say that state ωi and ωj are on the same

circuit. In particular, if ρ∗ii > 0, then there is a path from ωi to ωi.

We say that a set of states A∗ ⊆ Ω is irreducible if for each pair of states ωi and
ωj contained in A

∗, there is a path from ωi to ωj . Thus, A
∗ is irreducible if and only

if for every pair of states ωi and ωj contained in A
∗, ρ∗ij > 0 and ρ

∗
ji > 0 - and thus, if

A∗ is irreducible, then ρ∗ii > 0 for all ωi ∈ A∗.9 In fact, by the Contagious Theorem 3,
if A∗ is irreducible, then all states in A∗ are either recurrent (ρ∗ii = 1 for all ωi ∈ A∗)
or transient (ρ∗ii < 1 for all ωi ∈ A∗) . Finally, we say that a set of states A∗ ⊆ Ω is
closed if for all ωi ∈ A∗, ρ∗ij > 0 implies that ωj ∈ A∗.

Definition 5 (Basins of Attraction)

A set of states A∗ ⊆ Ω is said to be a basin of attraction for the process {W ∗
n}n

governed by Markov transition Q∗ if A∗ is closed and irreducible.

9 If the entire state space Ω is irreducible, we say that the process {W ∗
n}n governed by Markov

transition Q∗ is irreducible.
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Note that by Theorem 5(2), each state contained in a basin of attraction is recur-

rent, that is,

ρ∗ii := Π
©
T ∗ωi <∞|W ∗

0 = ωi
ª
= 1.

Thus, all basins of attraction generated the process {W ∗
n}n on finite state space Ω

are closed, irreducible, and positive recurrent.

4.5.2 The Existence of a Unique Decomposition into Basins of Attraction

We begin with an observation essentially due to Durrett (2005): Any Markov network-

coalition formation process, say {W ∗
n}n, on the finite state space

Ω := {ω1,ω2, . . . ,ωN} ,

is such that starting with any network-coalition pair ω = (G,S), there is another
network-coalition pair ω0 = (G0, S0) such that either (a) ρ∗ωω0 > 0 and ρ

∗
ω0ω = 0 (there

is an active path from ω to ω0, but not back), in which case it follows from Theorem

4 that ω is transient (otherwise, we would have ρ∗ω0ω = 1) or (b) ρ∗ωω0 > 0 implies
that ρ∗ω0ω > 0 (there is an active path from ω to ω0, and back), in which case the set
of network-coalition pairs

Ωω :=
©
ω0 ∈ Ω : ρ∗ωω0 > 0

ª
is closed and irreducible (i.e., a basin of attraction). First, to see that (b) implies

that Ωω is irreducible observe that if ω
0 and ω00 are in Ωω, then by Theorem 3(2)

ρ∗ω0ω00 ≥ ρ∗ω0ωρ
∗
ωω00 > 0. Hence ω00 can be reached from ω0. Second, to see that (b)

implies that Ωω is closed observe that if eω ∈ Ω and ρ∗ω0eω > 0, then by Theorem 3(2),

ρ∗ωeω ≥ ρ∗ωω0ρ
∗
ω0eω > 0. Hence, eω ∈ Ωω.

Our main result on the existence of a unique decomposition of the state space

into basins of attraction is as follows:

Theorem 6 (The Existence of a Unique Decomposition into Basins of Attraction)

Let {W ∗
n}∞n=0 be an endogenous Markov process of network and coalition formation

governed by equilibrium Markov transition Q∗ with state space

Ω := {ω1,ω2, . . . ,ωN} .

The following statements are true:

(1) There is a unique decomposition of the state space Ω of network-coalition pairs
given by

Ω = ∪kA∗k ∪ T,
where each A∗k is a basin of attraction and T is transient. Moreover, ∪kA∗k
is the unique partition of the set of recurrent network-coalition pairs, R∗ :=
{ω ∈ Ω : ρ∗ωω = 1} into closed recurrent sets. Thus, R∗ = ∪kA∗k.
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(2) Starting from any network-coalition pair ω ∈ Ω, the process {W ∗
n}∞n=0 reaches a

network-coalition pair ω0 contained in a basin of attraction in finite time with
probability 1. Thus, for all ω ∈ Ω, the exists an integer nω such that

Π
n
W ∗
n ∈

h
∪kA∗k

i
|W ∗

0 = ω
o
= 1for all n ≥ nω.

Proof. (1) By Theorem 5(1), because Ω is finite, the set of recurrent network-

coalition pairs R∗ is nonempty. Consider the sets

Ωω :=
©
ω0 ∈ Ω : ρ∗ωω0 > 0

ª
,

for ω ∈ R∗. By Theorem 4, Ωω ⊆ R∗ and if ω0 ∈ Ωω, then ρ∗ω0ω = 1. Thus, by
the discussion before the statement of Theorem 6, for each ω ∈ R∗, Ωω is closed and

irreducible, and therefor by Theorem 5(2) recurrent. Because the sets Ωω, ω ∈ R∗ are
equivalence classes of recurrent network-coalition pairs, for all ω and ω0 in R∗, either
Ωω ∩ Ωω0 = ∅ or Ωω = Ωω0 , and ∪ω∈R∗Ωω = R∗. Let

n
Ωωik

o
k
be the unique finite

partition of R∗ into recurrent classes and note that the set Ω\
h
∪kΩωik

i
is transient.

Letting Ωωik
= A∗k for all k, the proof of (1) is complete.

(2) Recalling that T := Ω\ £∪kA∗k¤ is transient, note that
Π {W ∗

n ∈ T for all n}

≤Pω0∈T Π {W ∗
n = ω0 for infinitely many n} = 0

≤Pω0∈T
£P

ω∈ΩΠ {W ∗
n = ω0 for infinitely many n|W ∗

0 = ω}Π {W ∗
0 = ω}¤

= 0

Thus, depending the starting state ω ∈ T , at some finite time point nω the process
leaves T , enters

£∪kA∗k¤ and remains there.
Examples 5: Basins of Attraction

(1) In example 4(1), by direct observation of Figure 4, we can conclude that sets

A∗1 = {ω4,ω5,ω6} and A∗2 = {ω1,ω2} are closed and irreducible, and hence
by Theorem 5(2) recurrent. Thus, A∗1 and A∗2 are the basins of attraction
generated by the network-coalition formation process {W ∗

n} governed by the
equilibrium Markov transition Q∗.

(2) In example 4(2), by direct observation of Figure 5, we can conclude that the

set A∗ = {ω1,ω2,ω5,ω6} is closed and irreducible (and hence also recurrent).
Thus, A∗ is the basin of attraction generated by the network-coalition forma-
tion process {Wn(f

∗
D)} governed by the equilibrium Markov transition Q(f∗D)

induced by the pure stationary equilibrium strategies f∗D = (f
∗
d1
, f∗d2) in Exam-

ple 3.
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4.5.3 Invariant and Ergodic Probability Measures

A probability measure λ = (λ1,λ2, . . . ,λN) ∈ P(Ω) on the state space of feasible
network-coalition pairs

Ω := {ω1,ω2, . . . ,ωN} .
is invariant for Markov transition Q∗ (i.e., is Q∗-invariant) if

λQ∗ =
X
i∈H

λi(Q
∗)i =

X
i∈H

λip
∗
i = λ. (24)

Thus, if probability measure λ is Q∗-invariant, then for any set of network-coalition
pairs E ⊆ Ω, if the current status quo network-coalition pair ωin = (Gin , Sin) is
chosen according to probability measure λ - so that the probability that ωin lies in

E is λ(E) :=
P
in∈HE λin - then the probability that any future period’s network-

coalition pair ωin+m = (Gin+m , Sin+m) lies in E is also λ(E) :=
P
in+m∈HE λin+m .

Denote by I∗ the collection of all Q∗-invariant measure.
Let A∗ denote the collection of all basins of attraction (i.e., all closed, irreducible

sets). A Q∗-invariant measure λ is said to be Q∗-ergodic if λ(A) = 0 or λ(A) = 1 for
all basins of attraction A∈A∗. Denote by E∗ the collection of all Q∗-ergodic measures.
Because the Q∗-ergodic probability measures are the extreme points of the (possibly
empty) convex set I∗ of Q∗-invariant measures (see Theorem 19.25 in Aliprantis and

Border (1999)), each measure λ in I∗ can be written as a convex combination of the
measures in E∗.

4.5.4 The Existence of a Unique Set of Ergodic Probability Measures

The set of invariant probability measures I∗ for equilibrium Markov transition Q∗

with state space Ω := {ω1,ω2, . . . ,ωN} is given by the set
I∗ = {λ ∈ P(Ω) : λQ∗ = λ} .

We will show that if ©
A∗1, A∗2, . . . , A∗L

ª
is the unique, finite, disjoint collection of basins of attraction generated by equilibrium

Markov transition Q∗, then corresponding to each basin of attraction A∗k there is
unique ergodic probability measure α∗k(·) concentrated on A∗k such that α∗k(ω) > 0
for all ω ∈ A∗k. Moreover, we will show that the set of all ergodic probability measures
for transition Q∗ is given by

E∗ = {α∗1(·), . . . ,α∗L(·)}.
Thus, we will conclude that each Q∗-invariant probability measure λ ∈ I∗ is a convex
combination of the ergodic measures in E∗ (i.e., we will conclude that I∗ = coE∗,
where co denotes convex hull). Finally, we show how to compute these ergodic mea-

sures.

The following results are variations on classical results for finite state Markov

chains (see for example Durrett (2005), Kemeny and Snell (1960), or Norris (1997)).
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Theorem 7 (Ergodicity and Invariance Results for Probability Measures and Func-

tions for Finite State Markov Processes)

Let Q∗ be an equilibrium Markov transition on state space Ω := {ω1,ω2, . . . ,ωN}
with basins of attraction ©

A∗1, A∗2, . . . , A∗L
ª
.

The following statements are true:

(1) For each basin of attraction A∗k there is unique ergodic probability measure
α∗k(·) with support contained in A∗k such that α∗k(ω) > 0 for all ω ∈ A∗k.

Moreover, for each ω ∈ A∗k,
α∗k(ω) =

1

EωT ∗ω
.

(2) The set of all Q∗-ergodic probability measures is given by E∗ = {α∗1(·), . . . ,α∗L(·)}
and I∗ = coE∗, where co denotes convex hull.

(3) For each basin of attraction A∗k and each initial state ωi0 ∈ A∗k

Π
n
limn

1
n

Pn−1
m=0 f(W

∗
m) = fA∗k |W ∗

0 = ωi0

o
= 1,

and

Π
n
limn

1
n

Pn−1
m=0 I{W∗

m=ωi0} = α∗k(ωi0)|W ∗
0 = ωi0

o
= 1.

Here,

fA∗k :=
X

ωj∈A∗k
f(ωj)α

∗k(ωj)

is the expected value of the function (random variable) f(·) on the basin of attraction
A∗k with respect to the ergodic probability measure α∗k(·) concentrated on A∗k,
while the random variable

1

n

n−1X
m=0

I{W∗
m=ωi0}

is the average amount of time (average number of moves) the processes spends

in state ωi0 ∈ A∗k before n.

Proof. (1) Suppose basin of attraction A∗k is given by

A∗k = {ω1k , . . . ,ωNk} ⊆ Ω.

Let Q∗k be the Nk ×Nk submatrix of the Markov transition matrix Q∗. The matrix
Q∗k has typical entry q

∗
ikjk

= q(ωjk |ωik ,σ∗D(ωik)) where q∗ikjk is the probability that
nature moves from state ωik = (Gik , Sik) to state ωjk = (Gjk , Sjk) given stationary
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equilibrium proposal strategies σ∗D(·) . Because the basin of attraction A∗k is closed
and irreducible, Q∗k is also a Markov transition matrix for the process confined to
A∗k. Recall that if the process begins in A∗k it will stay in A∗k. In particular, by
part (1) of Theorem 4 that for all ωi ∈ A∗k and for all n,

Π
n
W ∗
n ∈ A∗k|W ∗

0 = ωi

o
= 1.

Hence the process on A∗k is irreducible and every state in A∗k is positive recurrent.
Thus, part (1) follows from Theorem 1.7.7 in Norris (1997).

(2) By Theorem 3.2.10 in Strook (2005), because Ω contains positive recurrent
states (for example any state in a basin of attraction), the set of invariant proba-

bility measures I∗ is nonempty and I∗ is clearly convex and compact. Thus by the
finite-dimensional Krein-Milman Theorem (Aliprantis and Border (2005), p 297) I∗
is the convex hull of its extreme points. It only remains to show that each ergodic

probability measure in E∗ = {α∗1(·), . . . ,α∗L(·)} is an extreme point of I∗ and that
E∗ contains all the extreme points of I∗. But these conclusions are an immediate
consequence of Theorem 3.2.10 in Strook (2005).

(3) Because the process on A∗k is irreducible and every state in A∗k is positive
recurrent, part (3) follows from Theorem 1.10.2 in Norris (1997).

We conclude this section by showing how to compute the unique ergodic prob-

ability measure α∗k(·) corresponding to any basin of attraction A∗k. First because
each basin is closed and irreducible, consisting entirely of positive recurrent states,

the process confined to A∗k and governed by Markov transition matrix Q∗k is ergodic.
Here we follow the approach introduced in the classic book by Kemeny and Snell

(1960) on finite Markov chains. To begin, let h be a vector of ones in RNk , that is,

let

hk = (1, . . . , 1) ∈ RNk .
Also, let β be any probability vector in RNk , that is, let

βk = (β1k, . . . ,βNk)

where βjk ≥ 0 for all jk ∈ {1k, . . . , Nk} and
PNk
jk=1k

βjk = 1. Finally, let Zβk
be the

Nk ×Nk matrix given by

Zβk
= (I −Q∗k + hkβk)−1

where ⎛⎜⎝ 1
...

1

⎞⎟⎠ ¡ β1k , . . . , βNk

¢
=

⎛⎜⎝ β1k , . . . , βNk
...

β1k , . . . , βNk

⎞⎟⎠
Nk×Nk

.

Then, the ergodic probability measure

α∗k := (α∗k1k , . . . ,α
∗k
Nk
) := (α∗k(ω1k), . . . ,α

∗k(ωNk))
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is given by

βkZβk
= α∗k.

What is interesting is that βkZβk
= α∗k for all probability vectors βk.

Returning to Example 1 above, recall that the Markov transition

Q∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
.4 .6 0 0 0 0
.3 0 .4 .2 .1 0
0 0 0 .3 .7 0
0 0 0 .5 0 .5
0 0 0 .8 0 .2

⎞⎟⎟⎟⎟⎟⎟⎠
generates two basins of attraction, A∗1 = {ω1,ω2} and A∗2 = {ω4,ω5,ω6}. The state
T = {ω3} is transient.

First, we will compute α∗1 := (α∗11k ,α
∗1
2k
) := (α∗1(ω1k),α

∗1(ω2k)). Arbitrarily

choosing vector, β1 = (1, 0),

µ
1
1

¶¡
1 0

¢
=

⎛⎜⎝ 1 0
...

1 0

⎞⎟⎠
21×21

.

We have
Zβ1

= (I −Q∗1 + h1β1)−1

=

µµ
1 0
0 1

¶
−
µ
0 1
.4 .6

¶
+

µ
1 0
1 0

¶¶−1

=

µ
. 28571 . 71429
−. 42857 1. 4286

¶
.

Therefore,

β1Zβ1
=
¡
1 0

¢µ . 28571 . 71429
−. 42857 1. 4286

¶
=
¡
. 28571 . 71429

¢
= (α∗111 ,α

∗1
21
).

Checking, we have

α∗1Q∗1

=
¡
. 28571 . 71429

¢µ 0 1
.4 .6

¶
=
¡
. 28572 . 71428

¢
.
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Second, computing α∗2 := (α∗21k ,α
∗2
2k
,α∗23k), we arbitrarily choosing β2 = (0, 1, 0),⎛⎝ 1

1
1

⎞⎠ ¡ 0 1 0
¢
=

⎛⎜⎝ 0 1 0
...

0 1 0

⎞⎟⎠
32×32

.

We have

Zβ2
= (I −Q∗2 + h2β2)−1

=

⎛⎝⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠−
⎛⎝ .3 .7 0
.5 0 .5
.8 0 .2

⎞⎠+
⎛⎝ 0 1 0
0 1 0
0 1 0

⎞⎠⎞⎠−1

=

⎛⎝ 1. 2281 −. 14035 −.087719
. 46784 . 32749 . 20468
. 64327 −. 54971 . 90643

⎞⎠ .
Therefore,

β2Zβ2
=
¡
0 1 0

¢⎛⎝ 1. 2281 −. 14035 −.087719
. 46784 . 32749 . 20468
. 64327 −. 54971 . 90643

⎞⎠
=
¡
. 46784 . 32749 . 20468

¢
= (α∗212 ,α

∗2
22 ,α

∗2
32).

Checking, we have

α∗2Q∗2

=
¡
. 46784 . 32749 . 20468

¢⎛⎝ .3 .7 0
.5 0 .5
.8 0 .2

⎞⎠
=
¡
. 46784 . 32749 . 20468

¢
.
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5 Strategic Stability and Dynamic Consistency in Net-

work Formation Games

Throughout this section, let σ∗D(·) = (σ∗d(·|·))d∈D be a stationary equilibrium of the

dynamic network formation game with corresponding equilibrium Markov transition

p∗(·|·) = q(·|·,σ∗D(·)),

unique basins of attraction, ©
A∗1, A∗2, . . . , A∗L

ª
,

and ergodic probability measures,

E∗ = {α∗1(·), . . . ,α∗L(·)},

where

α∗k(ω) =
1

EωT ∗ω
for all ω ∈ Ω and k = 1, . . . , L,

and EωT
∗
ω is the expected hitting time (or expected number of moves) for the endoge-

nous process {W ∗
n}n governed by the equilibrium Markov transition p∗(·|·) to reach

network-coalition pair ω again after leaving ω at time zero.

5.1 Strategic Stability

Each player’s equilibrium network proposal strategy

ω = (G,S)→ σ∗d(·|G,S)

governs the way in which player d tries to influence the process of network forma-

tion across time and for each given status quo coalition S, σ∗d(·|·, S) is an equilib-
rium Markov transition on networks governing player d’s network proposal process.

For each status quo coalition S, we will refer to the equilibrium Markov transi-

tions, (σ∗d(·|·, S))d∈D, as the S-proposal transitions and we will refer to the induced
equilibrium Markov network-coalition transition, p∗(·|·) = q(·|·,σ∗D(·)), as the state
transition.

To begin, let L∗dS denote the set of absorbing sets corresponding to player d’s S -
proposal transition σ∗d(·|·, S).10 If the set of networks E is an absorbing set for player
d under S-proposal transition σ∗d(·|·, S), then for any status quo network G ∈ E, it is
optimal for player d ∈ S to propose with probability 1 either the status quo network
or a new network G0 in E. Moreover, by assumption A-3(b) if d /∈ S, then player d is
10A set of networks E is absorbing for player d in coalition S provided

σ∗d(E|G,S) = 1
for all G ∈ E. The set E is minimal absorbing if there exists no proper subset of E which is also
absorbing.
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constrained to propose only the status quo network.11 If in addition, E is absorbing
for all players in S, that is, if E ∈ ∩d∈SL∗dS , then for all status quo networks G ∈ E,
it is optimal for all players to propose a network contained in E with probability
1. Note, however, that unless E is a singleton (i.e., E = {G} for some network
G ∈ G), players may not agree on their individual network proposals. However, if
E is absorbing for all members of S, then at least all members will agree that their
proposals should be drawn from E. Thus, we can think of the sets in ∩d∈SL∗dS as
being strategically stable for coalition S - as long as coalition S is the status quo

coalition. We will denote by L∗S the intersection ∩d∈SL∗dS and we will refer to the
absorbing sets contained in L∗S as S-strategically stable sets.

Let C be a subcollection of the feasible coalitions in F . We will say that a set
of networks E is C-strategically stable if it is S-strategically stable for all coalitions
S ∈ C, that is, if

E ∈ ∩S∈CL∗S := L∗C,
and we will say that E is strategically stable if C = F . Thus, if E is C-strategically
stable, then in any status quo state ω = (G,S) with G ∈ E and S ∈ C, all players in
S will find it in their best interest to propose networks in E, while all players not in
S will be constrained (under the rules of network formation) to propose the status

quo network G - also a network in E. Moreover, the same will be true in any other
status quo state ω0 = (G0, S0) with G0 ∈ E and S0 ∈ C, that is, all players in S0 will
find it in their best interest to propose networks in E, while all players not in S0 will
be constrained to propose the status quo network G0.

We have the following formal definition.

Definitions 7 (C-Strategic Stability and Strategic Stability)
A set of networks E is C-strategically stable for C a subcollection of feasible coalitions

in F , if in all states (G,S) ∈ E×C all players d ∈ S propose networks in E
with probability 1, that is, if for all (G,S) ∈ E×C

σ∗d(E|G,S) = 1 for all d ∈ S.
Thus, the set of all C-strategically stable sets is given by

L∗C := ∩S∈CL∗S := ∩S∈C [∩d∈SL∗dS ] .
If E is F-strategically stable, then we say it is strategically stable. The collection of

all strategically stable sets is given by

L∗F := ∩S∈FL∗S := ∩S∈F [∩d∈SL∗dS] .

11For any status quo state (G,S),
σ∗d({G}|G,S) = 1

for any player d not in coalition S. Thus, for any status quo state (G,S), {G} is the minimal
absorbing set for player outside the status quo coalition S.
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Example 7: Strategic Stability in the Dynamic Club Network Formation

Game

Returning to the club network formation game in Example 3, by examination of the

pure stationary strategies in Table 3 we can conclude that the S-strategically

stable sets (i.e., the coalitional stable sets) are given by

L∗
d1{d1} := {{G1, G2, G3}, {G1, G3}, {G2}, {G1}},

and

L∗
d2{d2} := {{G1, G2, G3}, {G1, G3}, {G2, G3}, {G3}}.

It is even easier to conclude this after an examination of the S-proposal tran-

sition supernetworks depicted in Figure 6 corresponding to the proposal tran-

sitions σd1(·| · {d1}) and σd2(·| · {d2}).

1

G2

1

1

1

1

G3

1

G1

G2

G3

G1

d1 {d1} d1 {d2}

1

1

1 1

1

1

G2G2

G3

G1G1

G3

d2 {d1} d2 {d2}

Figure 6: The Equilibrium Proposal Strategy Supernetworks

For example, in Figure 6 we see in the first column of figures, corresponding to

player d01s proposal in state (G2, {d1}), that player d1 chooses (as indicated in
Table 3) proposal G2 with probability 1.

Recalling that in Example 3 the feasible set of coalitions is given by F1 = {{d1}, {d2}},
the strategically stable sets are given by

L∗F1 := L∗d1{d1} ∩ L∗d2{d2} = {{G1, G2, G3}, {G1, G3}}.

5.2 Dynamic Consistency

Suppose the C-strategically stable set of networks E is such that nature chooses with
probability 1 network-coalition pairs from E×C starting from any status quo network-
coalition pair contained in E× C. In particular, suppose that in addition to E being
C-strategically stable, E×C is absorbing for the state transition p∗(·|·) = q(·|·,σ∗D(·)).
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We will refer to any such set of networks as being C-dynamically consistent. Thus,
a set of networks E ∈ L∗C is C-dynamically consistent if E × C ∈ L∗, where L∗ is the
collection of all absorbing sets corresponding to the state transition p∗(·|·).

We have the following formal definition.

Definitions 8 (C-Dynamic Consistency and Dynamic Consistency)
A C-strategically stable set of networks E is C-dynamically consistent if in all states

(G,S) ∈ E×C nature chooses states in E×C with probability 1, that is,

p∗(E×C|G,S) = 1for all (G,S) ∈ E×C.

Thus, the set of all C-dynamically consistent sets is given by

D∗C := {E ∈ L∗C : E×C ∈ L∗} .

If E is F-dynamically consistent, then we say it is dynamically consistent. The
collection of all dynamically consistent sets is given by

D∗F := {E ∈ L∗F : E×F ∈ L∗} .

Example 8: Dynamic Consistency in the Dynamic Club Network Forma-

tion Game

Returning again to the dynamic club network formation game in Example 3, by

examination of the Figure 5 we can conclude that the collection of absorbing

sets for the state transition p∗(·|·) is given by

L∗ := {{ω1,ω2,ω3,ω4,ω5,ω6}, {ω1,ω2,ω5,ω6}} .

From Example 5 we have L∗F1 = {{G1, G2, G3}, {G1, G3}} and thus we have

{G1, G2, G3} × F1 = {ω1,ω2,ω3,ω4,ω5,ω6},
and

{G1, G3} × F1 = {ω1,ω2,ω5,ω6}.
We can conclude, therefore, that the set of strategically stable networks and

the set dynamically consistent networks are equal (i.e., L∗F1 = D∗F1).

The following result tells us precisely the relationship between dynamically con-

sistent sets and basins of attraction.
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Theorem 8 (Dynamically Consistent Sets and Basins of Attraction)

Let

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .
be a dynamic network formation game with state space Ω := G × F satisfying

assumptions [A-1]-[A-4]. Also, let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the endogenous network-coalition formation process governed by the equilib-

rium Markov transition p∗(·|·) = q(·|·,σ∗D(·)) where σ∗D(·) is a stationary Nash
equilibrium of Γ.

If for some collection of player coalitions C ⊆ F , the set of networks E is C-
dynamically consistent, then the set of network-coalition pairs EC := E×C contains
at least one basin of attraction; that is,

A∗k ⊆ EC for some k = 1, . . . , L.

The conclusion of Theorem 8 is a consequence of two facts. First, if E is an

absorbing set of the state transition p∗(·|·), then E ∩ [∪kA∗k] 6= ∅. If not then,

recalling that Ω = ∪kA∗k ∪ T , we must conclude that E is contained in the transient
set T , a contradiction. Hence, it must be true that E ∩A∗k 6= ∅ for some k. But now
because the endogenous process of network-coalition formation visits each network-

coalition pair in A∗k infinitely often (i.e., because A∗k is recurrent) and because E
is absorbing for p∗(·|·), it must be true that A∗k ⊆ E for all basins A∗k having a
nonempty intersection with E. Thus, because EC := E×C is absorbing for p∗(·|·), it
must be true that A∗k ⊆ EC.

By Theorem 8, we conclude that starting at any network-coalition pair contained

in EC, the network-coalition formation process {W ∗
n}n will reach in finite time with

probability 1 some basin of attraction A∗k contained in EC, and once there, will
remain there.

5.3 Dynamic Path Dominance Core, Dynamic Strong Stability, and

Dynamic Pairwise Stability

In a static abstract game setting Page and Wooders (2009) introduced the notion

of the path dominance core. Stated informally, the path dominance core C contains
all feasible networks G such that there is no domination path leading to another

feasible network G0 (i.e., C contains all undominated networks with respect to path
dominance). A closely related notion, introduced earlier by Jackson and van den

Nouweland (2005), also in a static setting, is the notion of strong stability. Stated

loosely, a feasible network G is strongly stable if every player coalition that is able

to change the status quo network G to another feasible network, prefers not to do so

(i.e., stays with the status quo network). One way to extend the notions of the path

dominance core and strongly stable networks to the dynamic setting considered here

is as follows:
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Definition 9 (The Dynamic Path Dominance Core and Dynamically Strongly Stable

Networks)

A network G∗ ∈ G is in the dynamic path dominance core (or equivalently, is

dynamically strongly stable) if the set {G∗} is dynamically consistent, that is,
if {G∗} ∈ L∗F and {G∗} × F ∈ L∗.

Thus, if a network is dynamically consistent, then all players want to stay there

and the induced process abides by the wishes of the players.

The following result is a direct consequence of Theorem 9.

Theorem 9 (The Dynamic Path Dominance Core, Dynamically Strongly Stable

Networks, and Basins of Attraction)

Let

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .
be a dynamic network formation game with state space Ω := G × F satisfying

assumptions [A-1]-[A-4]. Also, let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the endogenous network-coalition formation process governed by the equilib-

rium Markov transition p∗(·|·) = q(·|·,σ∗D(·)) where σ∗D(·) is a stationary Nash
equilibrium of Γ.

If network G∗ ∈ G is in the dynamic path dominance core, then the set of network-
coalition pairs {G∗}×F contains at least one basin of attraction; that is,

A∗k ⊆ {G∗}×F for some k = 1, . . . , L.

By Theorem 9, if network G∗ is in the dynamic path dominance core, then there
is a least one basin of attraction, say A∗k, consisting of network-coalition pairs of the
form (G∗, S) for S ∈ C∗k⊆F for some subcollection of player coalitions. Thus, starting
at any network-coalition pair (G∗, S) (i.e., where S is any feasible coalition), the
network-coalition formation process {W ∗

n}n will reach in finite time with probability
1 a basin of attraction A∗k of the form {G∗} × C∗k and once there will remain there.

Note that if for some network G∗ ∈ G and some coalition S∗ ∈ F , {G∗} ∈ L∗S∗
and {(G∗, S∗)} ∈ L∗, so that {G∗} is {S∗}-dynamically consistent, this does not
necessarily imply that G∗ is in the dynamic path dominance core, even if {(G∗, S∗)}
basin of attraction, because {G∗} may not be dynamically consistent. Why? Because
while nature will choose with probability 1 the network-coalition pair (G∗, S∗) if the
status quo is (G∗, S∗), if the status quo coalition is not S∗, that is, if the status quo
state is (G∗, S0) for some coalition S0 ∈ F not equal to S∗, some players in S0 may
propose a network other than G∗ (i.e., it may be the case that G∗ /∈ L∗dS0 for some
player d ∈ S0) and in turn nature may choose a state other than (G∗, S∗). Moreover,
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if G∗ is not strategically stable, but nonetheless {G∗} × C ∈ L∗ for some subset of
coalitions C ⊆ F , then if the equilibrium network-coalition formation process reaches

any state (G∗, S) ∈ {G∗} × C, the process will remain in the set {G∗} × C - despite
network proposals to the contrary by players, even players in coalitions in C. In such
a case, the state transition overrides the wishes of the players. This leads to the

following alternative notion of dynamic path dominance core.

Definition 9’ (The State Transition Core)

(1) (State Transition Core) A network G∗ ∈ G is in the state transition core
if the set of states {G∗} × F is an absorbing set for the state transition

p∗(·|·).
(2) (Weak State Transition Core) A network G∗ ∈ G is in the weak state

transition core if the set of states {G∗} × C is an absorbing set for the
state transition p∗(·|·) for some subset of coalitions C ⊆ F .

Under the definition of weak state transition core, for any basin of attraction A∗k

of the form A∗k = {(G∗k, S∗k)}, G∗k is in the weak state transition core. Moreover,
if for some state transition absorbing set E, E contains A∗k = {(G∗k, S∗k)} and
is disjoint from the other basins, then starting at any network-coalition pair in E,

the process will reach in finite time with probability 1 the network-coalition pair
(G∗k, S∗k) and will remain there.

To extend the definition of the pairwise stability introduced in Jackson and Wolin-

sky (1996) to the dynamic setting considered here, we begin by specializing the fea-

sible set of coalitions to coalitions of size no greater than 2.12

Definition 10 (Dynamic Pairwise Stability)

Suppose the feasible set of coalitions is given by

F2 = {S ∈ P (D) : |S| ≤ 2} .

(i.e., all feasible coalitions consist of at most two players). Then a network

G∗ ∈ G is dynamically pairwise stable if the set {G∗} is dynamically consistent,
that is, if {G∗} ∈ L∗F2 and {G∗} × F2∈ L∗.

The following result is also a direct consequence of Theorem 9 and the definition

of dynamic pairwise stability.

Theorem 10 (Dynamic Pairwise Stability and Basins of Attraction)

Let

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .
12Stated very loosely, a network G is pairwise stable if every 1 or 2 player coalition that is able to

change the status quo network G to another network, prefers not to (i.e., stays with the status quo

network).
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be a dynamic network formation game with state space Ω := G × F satisfying

assumptions [A-1]-[A-4]. Also, let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the endogenous network-coalition formation process governed by the equilib-

rium Markov transition p∗(·|·) = q(·|·,σ∗D(·)) where σ∗D(·) is a stationary Nash
equilibrium of Γ.

If network G∗ ∈ G is dynamically pairwise stable, then the set of network-coalition
pairs EF2 := {G∗}×F2 contains at least one basin of attraction; that is,

A∗k ⊆ EF2 for some k = 1, . . . , L.

By Theorem 10, if network G∗ is dynamically pairwise stable, then there is a least
one basin of attraction, say A∗k, consisting of network-coalition pairs of the form
(G∗, S) for S ∈ C∗k2 ⊆F2. Thus, starting at any network-coalition pair (G∗, S), the
network-coalition formation process {W ∗

n}n will reach in finite time with probability
1 a basin of attraction A∗k of the form {G∗} × C∗k2 and once there will remain there.

Moreover, the ergodic measure α∗k(·) is such that α∗k({G∗} × C∗k2 ) = 1. Thus, by
Theorem 10, for any dynamically pairwise stable network G∗, any state (G∗, S) with
player coalition S ∈ C∗k2 is contained in the support of the unique ergodic measure

α∗k(·) corresponding to the basin of attraction {G∗}×C∗k2 . This conclusion is similar
to the conclusion reached by Jackson and Watts (2002) for pairwise stable networks

resulting from a network formation process governed by a Markov chain generated by

myopic players. They reach their conclusion by considering a sequence of perturbed

irreducible Markov chains (i.e., each with a unique invariant measure) converging to

the original Markov chain. This method is similar to a method introduced into games

theory by Young (1993) which in turn is based on some very general perturbation

methods found in Freidlin and Wentzell (1984). Here we have reached a similar

conclusions in a different but related model using a different approach.

Example 6: Emptiness of the Dynamic Path Dominance Core

Returning again to the club network formation game in Example 3, we see by a

re-examination of Figure 5, reproduced in Figure 7 below, that for the club
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network formation game in Example 3 the path dominance core is empty.
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Figure 7: The Equilibrium Markov Supernetwork

from Example 3

Again note, however, that the set of networks {G1, G3} is dynamically consistent
and that the set of network-coalition pairs

A∗ = {ω1,ω2,ω5,ω6}

is the only basin of attraction.
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