NORMAL = NORMATIVE? THE ROLE OF INTELLIGENT AGENTS IN NORM INNOVATION

Giulia Andrighetto
Laboratory of Agent Based Social Simulation,
Institute of Cognitive Science and Technology,
CNR, Rome, Italy

NOVEMBER 19, 2008

WORKSHOP IN POLITICAL THEORY AND POLICY ANALYSIS
INDIANA UNIVERSITY
EMIL, “EMergence In the Loop: simulating the two way dynamics of norm innovation”

- **Theoretical Objectives**
 EMIL is aimed at providing a theory of norm innovation by means of agent-based simulation, understanding not only how new norms emerge, but also how they immerge in the minds of autonomous agents.

- **Technological Objectives**
 EMIL is aimed to provide an instrument, a simulator (EMIL-S), for conducting experiments on norm innovation, and show how it applies to specific scenarios.

- **Application Objectives**
 Forecasted impact of the project is to contribute to the regulation of e-communities by handing out a simulator for the emergence of new norms in complex social systems.
EMIL CONSORTIUM

- National Research Council, Institute of Cognitive Science and Technology
 Key Personnel: R. Conte (Coordinator)
- University of Bayreuth, Dept. of Philosophy
 Key Personnel: R. Hegselmann
- University of Surrey, Centre for Research on Social Simulation
 Key Personnel: N. Gilbert
- Universität Koblenz-Landau
 Key Personnel: K.G. Troitzsch
- Manchester Metropolitan University, Centre for Policy Modelling
 Key Personnel: B. Edmonds
- AITIA International Informatics Inc.
 Key Personnel: L. Gulyás
OUTLINE

- A social cognitive view of norms
- Normative MAgent architectures:
 - BOID
 - EMIL-A
- Simulation model and results
- Conclusions and future work.
A SOCIAL COGNITIVE DEFINITION OF NORMS

- Norms = behaviors spreading in population \((P_i)\) as long as
- Corresponding prescriptions and mental constructs (Conte and Castelfranchi, 1995; 2006) spread over \(P_i\)
- N-beliefs: beliefs that for given sets of agents, in given set of contexts, given actions are obliged/forbidden/permitted
- N-goals: goals to (not) achieve/accomplish obligatory/forbidden/permitted actions.
PROPERTIES OF NORMS

1. **Multi agent**
 - Involving more than one agent
 - More than one social role: Observer, Legislator/Source, Addressee/Recipient, Defender

2. **Hybrid**
 - behaviour
 - mental construct

3. **Dynamic**: undergoing two processes
 - *emergence*: process by means of which a norm not deliberately issued spreads through a society
 - *immersion*: process by means of which a normative belief is formed into the agents’ minds (Castelfranchi, 1998; Conte et al., 2007)
Social phenomena are due to the agents’ behaviors, but... the agents’ behaviors are due to the mental mechanisms controlling and (re)producing them.

- How the norm should work through the minds of the agents? How is it represented?
- Which are the proximate mechanisms underlying the normative behavior?
- What does it mean to conform to a norm from a mental - not just a behavioral - point of view? What does it mean to obey?
IMPLEMENTING NORMS ON AGENTS

- BOID
- EMIL-A
THE BOID ARCHITECTURE

- BDI architecture with obligations: Beliefs, Desires, Intentions, Obligations.
- Interactions at study: which component is overridden?
 - Realism: B override all others
 - Selfishness: D override obligations
 - Sociality: O override intentions.

- How are O acquired?
- How do agents tell that something is a new norm?
How do agents find out norms?

How do agents acquire new norms autonomously?
EMIL A

- is able to recognize N, tell what is a N and what is not and form a N-bel corresponding to N;
- is able to assess whether it is concerned by N;
- accepts N, forms a N-goal corresponding to N;
- decides to comply with N or not (intention);
- is able to re-issue N, to prescribe it to other fellows subject to N, and
- is able to observe, monitor their behaviors wrt N and react in a positive or negative way to them.
CONFORMITY AS ROUTINE BEHAVIOR

Our quite rich cognitive characterization of the representations and processes underlying a behavior obedient to a norm

.... shouldn’t however give the idea of behavioral conformity as always based on such a complex ‘reasoning’ and ‘deliberation’.
Norm conformity and obedience become a *habit*, an *automatism*, a *routine* behavior.

But before, norms must be acquired (*immergence*)
AGENTS AND AUTONOMY

- Autonomy in beliefs
 - Norm recognition process
- Autonomy in goals
 - Norm adoption process (Conte and Castelfranchi, 1995).
NORM RECOGNITION
Each input is presented as an ordered vector

- Source (x);
- Action transmitted (a) (potential norm)
- Type of input:
 - Behaviors
 - Messages: assertions (A), behaviours (B), requests (R), deontics (D), evaluations (V), sanctions (S);
- Observer (y);
N-RECOGNITION MODULE

- $V_c = N$-threshold
- $V_c = 8$

- **LTM**
 - N-bel: It is prohibited to smoke
 - N-Board

- Decision:
 - $> V_c$
 - (Candidate N-Bel "It is prohibited to smoke")
 - $< V_c$

- **Agent x**
- **Agent y**

- X: smoke
- Prohibition
- y
NORM RECOGNIZER AT WORK 1/6

The Observer

N-Board: empty
Layer 2: empty
Layer 1: empty
NORM RECOGNIZER AT WORK 2/6

The Sender

Agent 2 | a1 | D(a1) | Agent 1

The Observer
At least one time the action \((a_1)\) must be presented as Deontic \((D)\).
The number of observed behaviors must reach the threshold value (8 in this case) to allow the generation of a new normative belief.
NORM RECOGNIZER AT WORK 5/6
A new Normative Belief (NB) concerning the action \(a1 \) is generated and stored in the Normative Board.

Layer 1:

\[B(a1) \times n \text{Times} \]

Layer 2:

\[D(a1) \]

The Observer
N-RECOGNITION MODULE

N-bel: It is prohibited to smoke

Agent x X smoke Assertion y Agent y
A SIMULATION STUDY
NORM-RECOGNIZERS VS SOCIAL CONFORMERS

- What are observable effects of norm recognition?
- Implement different populations (Andrighetto et al., 2008, Campennì et al., 2008):
 - Social conformers follow actions most frequently done in observation window (parameter)
 - Norm recognizers take input from others, form beliefs and act based on those.
AGENT AND WORLD

4 contexts:
- following its agenda and time of permanence, each agent moves among contexts;
- in each context, agents can produce 1 out of 3 actions;
- 1 action is the same for all of the contexts.
Each is provided with:

- Norm-Recognition Module
- Agenda: individual time of permanence (in contexts);
- New normative beliefs contribute to choose action;
- If normative board is empty, action is randomly chosen.
SOCIAL CONFORMER

- Each observes other agents in same context
- According to conformity rate, imitates most frequent action

Conformity rate = 9
SIMULATIONS' RESULTS
PRELIMINARY FINDINGS

- **Social conformers (above):**
 - Each colour represents one action
 - No difference within ticks
 - Strong difference
 - Among ticks (no belief)
 - Among scenarios (no memory)
 - Most frequent action (dark blue) is distributed throughout the simulation: nothing emerges!

- **Norm recognizers (below):**
 - Fuzzier
 - Rows (autonomy)
 - Columns (beliefs)
 - After 60th tick, one action common to all scenarios: something emerges…
 - What is it? Let’s look into agents beliefs…
IMMERGENCE

- At the 30th tick a normative belief starts to spread
- What has happened in the interval?
- Other normative beliefs got formed, although earlier is more frequent
- Immergence is earlier: it takes time for effect to emerge
LATENCY OF NORMS

- Time interval between N-bel's appearance and convergence on corresponding action.
- Actually, a complex loop
 - from N-Belx to N-actionx
 - from N-actionx to N-bely
 - from N-bely to N-actiony
 - Etc.
- Immergence ≠ 2nd-order emergence: not a reflected upon emergent phenomenon but involved in emergence!
TO SUM UP

- Social conformers do not converge on one action
- Normative agents converge on the common action.
FOLLOW-UP QUESTIONS

- Only common actions?
- What happens with physical barriers and/or (cultural) drifts?
- Equally frequent norms might emerge in different sub-populations: norm innovation?
LET US SIMULATE A BARRIER

At a given run, agents get stuck to current locations, they can no longer move across settings.
NORMATIVE BELIEFS

No barrier

Yes barrier
BUT IN 300 TICKS...
SOCIAL CONORMERS VS NORM RECOGNIZERS: FINAL REMARKS

- In a multi-scenario world, unlike social conformers, norm recognizers converge.
- Norms immerge in the minds before emerging in behavior.
- A normative belief corresponds not necessarily to the most frequent action.
- Statistical frequency is not sufficient for a norm to emerge.
- Barriers are sufficient (not necessary) for norm-innovation.
- Norms have a latency time.
SOCIAL CONFORMERS VS NORM RECOGNIZERS: NEXT STEPS

- Add more heterogeneity: agents endowed with different individual abilities to recognize norms and to comply with them.
- Add more complexity: more realistic scenarios
- Add punishment and sanctioning
- What about inertia (i.e. the time for a norm to disappear)? During inertia, norms may compete in the same population.
- Internalization
 - What does this really mean? Why does it matter? Which is the model of this mental mechanism?
TRAFFIC SCENARIO

- One-way road with cars moving from North to South
- Two meadows with children moving between East and West
- Car drivers and children learn how to behave reasonably in this scenario and internalise emerging norms

K. Troitzsch, 2008
TRAFFIC SCENARIO RUNNING

- the first (simulated) minute (20 pedestrians, random cars)
- several (simulated) minutes later (again 20 pedestrians, random cars)
- the same, some pedestrians have not learnt to use the crossing
THANK YOU FOR YOUR ATTENTION

References and online simulations can be found on http://labss.istc.cnr.it/